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Abstract-A new means to classify organic matter in rock samples using kinetic parameters is described.
Kinetic parameters are computed for Rock-Eval comparative pyrolysis curves, using a single heating rate
experiment. The kinetic parameters are computed by an improved Freeman-Carroll method, assuming
an overall nth-order reaction. Kinetic parameters are used for characterizing the type and maturity of
sedimentary organic matter.

For kerogens, the kinetic parameters are obtained on extracted-rock samples. They provide a
complementary determination of organic matter type, by using the S2 peak shape which is not described
by the classical Rock-Eval parameters.

For resins + asphaltenes, the kinetic parameters are computed on the S2' pyrolysis curve obtained by
comparative pyrolysis. They allow the determination of the type of kerogen from which they were derived
and also their maturity level.

The kinetic characterization can be applied directly to current Rock-Eval analysis and used in routine
analysis, without changing the standard procedures but care should be taken for bitumen rich samples.

Key words-oil shales, pyrolysis, nth-order kinetics, kerogen and bitumen characterization, activation
energy

INTRODUCTION

Kinetic parameters are seldom used for geochemical
characterization of sedimentary organic matter. They
may prove very useful however, as it is well-known
that the shape of pyrolysis curves is dependent on the
type and maturity of the kerogen (Espitalie et al.,
1985/86). In their Rock-Eval method, Espitalie et al.
(1977) paid no attention to this aspect of pyrolysis,
although the results are convenient for kinetic analy­
sis. More recently, Espitalie et al. (1985/86) described
the use of the S2 peak shape for a better organic
matter determination and for kinetic computations.

Kinetic models were mainly developed for coals
and kerogen, to describe the mechanism of pyrolysis.
At present, kinetic models for kerogen degradation
are frequently used in the mathematical modeling
of hydrocarbon generation in sedimentary basins
(Ungerer et al., 1986; Burnham and Braun, 1985;
Sweeney et al., 1987, Ungerer and Pelet, 1987).

This paper describes a new means to classify
organic matter using kinetic parameters. It provides
a complementary determination of organic matter
type from the data directly available in current
Rock-Eval analysis. It uses the S2 peak shape, which
is not described by the classical Rock-Eval par­
ameters HI (hydrogen index), 01 (oxygen index) and
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Tmax • In order to avoid any change in the Rock-Eval
analytical procedure, the kinetic parameters are to be
computed on a single constant heating rate exper­
iment. The nth-order Freeman and Carroll (1958)
method is used, with some improvements, for the
determination of kinetic parameters from pyrolysis
curves. In a recent work, Delvaux (1988) have
demonstrated that the activation energies and reac­
tion orders for the pyrolysis of kerogen and
resins + asphaltenes (R + A) in rock samples are,
within certain limits, representative of their origin
and maturation rank. The activation energies and
reaction orders are then plotted in reference diagrams
in order to classify the organic matter type.

In order to increase the possibilities of this kinetic
characterization technique, it is desirable to compute
kinetic parameters on pyrolysis curves obtained by
the new comparative pyrolysis method. (Delvaux et
al., 1990), which is a recent development of the
Rock-Eval method of Espitalie et al. (1985/86). For
kerogens, kinetic parameters are computed on ex­
tracted rock samples to avoid contamination by
heavy products of the bitumen fraction. For R + A,
the kinetic parameters are computed on the S2' peak
obtained by the comparison of the whole-rock pyrol­
ysis curve and the extracted-rock pyrolysis curve
(Fig. 1). With the combination of comparative pyrol­
ysis and kinetic analysis, it becomes possible to
classify the R + A and to assign them to the kerogen
type from which they are derived. This is of great
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Fig. 1. Kinetic analysis is carried out on S2 curves for kerogen and S2' curves for R + A. These are
obtained by comparative pyrolysis (see Delvaux et al., 1990).•••• , Experimental curve (one dot for
every 5°C). --, Theoretical curve, computed from kinetic parameters obtained by the Freeman and

Carroll (1958) method.

interest because these products cannot be character­
ized by the standard Rock-Eval method.

The kinetic characterization can also be applied to
whole-rock samples, but it needs to be used with
caution on rock samples with a high bitumen content
and the advantages of the R + A determination are
lost.

We assume here that the overall pyrolysis reaction
can be represented by a single nth-order kinetic
reaction. The reaction parameters should not be
taken literally. Instead, they are apparent reaction
profile parameters that reflect differences in kerogen
structure and reactivity. Our kinetic parameters are
derived from a single heating rate experiment, so it
should be emphasized that the kinetic parameters
obtained here are not meant to reproduce pyrolysis
at other heating rates, and certainly not to repro­
duce hydrocarbon generation at geological heating
rates.

DETERMINATION OF KINETIC PARAMETERS

The pyrolysis curves were first obtained by Rock­
Eval pyrolysis analysis, using the method described
by Espitalie et al. (1985/86). But, as shown elsewhere
(Delvaux et al., 1990), this method presents some
inadequacies for the study' of kerogen for rock
samples with high bitumen content, and it is not at

all suitable for the study of R + A. Comparative
Rock-Eval pyrolysis, which has been developed re­
cently (Devaux et al., 1990), was used to obtain two
well-defined reaction curves: S2 for the kerogen
(without contamination by products of heavy bitu­
men); S2' for R + A (Fig. 1).

The pyrolysis reaction can be represented by two
different kinetic models:

-a statistical distribution of the activation energy
of first-order reactions (Anthony and Howard,
1976). This method is widely used to provide
kinetic data for the modeling of hydrocarbon
generation at geological heating rates
(Burnham and Braun, 1985; Ungerer et al.,
1986).

-a single nth-order overall reaction (Freeman
and Carroll, 1958; Coats and Redfern, 1964;
Friedman, 1965). The latter was used for com­
putation of kinetic parameters of kerogen­
bearing rocks and coals by Leplat et al. (1983),
Wen and Kobylinsky (1983) and Yang and
Sohn (1984).

Recently, Jiintgen (1984) and Braun and Burnham
(1986) have demonstrated that, in some circum­
stances, a single nth-order reaction model can
provide a comparable fit to experimental data as a
multiple first-order reaction model.
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The Freeman and Carroll (1958) method was
chosen for a number of reasons. Its main advantage
is that it gives simultaneously the activation energy E
and reaction order n, without preliminary assumption
of the reaction order. Sharp and Wentworth (1969)
have, however, reported a lack of precision in the
results given by this method. In fact, the Freeman and
Carroll method produces several possible results and
the choice between them is rather subjective. To
overcome this cause of imprecision, a computer
method has been developed for selecting the values
of activation energy E and reaction order n, which
best represent the experimental reaction as a whole
(Delvaux, 1988).

In a few words, for each set of E and n values given
by the Freeman and Carroll equation, the related
frequency factor A is computed. A theoretical pyrol­
ysis curve is then obtained by a numerical integration
method, including E, n and A kinetic parameters, as
well as the true experimental temperature gradient.
This theoretical curve is quantitatively compared
with the experimental one. The best-fitting curve is
considered and its corresponding E and n values are
retained. These results are then used for the comp­
lementary determination of organic matter type, at
the experimental heating rate of 25°C/min. In prac­
tice, not every sample will give representative results.
By experience, the minimum yield of S2 and S2'
products required for the kinetic calculation is be­
tween 0.5 and 1 kg HC/tonof rock.

The mathematical processing, which also com­
prises comparative pyrolysis calculations, is carried
out on a personal computer. The reproducibility of
the selected results is good enough for further use in
geochemical characterization. Standard deviations
for E range between 0.9-2.8% for kerogen and up to
5.3% for R + A. For n, standard deviations range
between 1.4-4.5% for kerogen and up to 11.2% for
R+A.

KINETIC CHARACTERIZATION OF KEROGEN IN
EXTRACTED SAMPLES

Rock samples of various origin and maturation
rank were selected as reference samples (Table 1). The
pyrolysis and kinetic parameters were obtained on
extracted rock samples, except for HI, which is
obtained separately on decarbonated samples. Their
kerogen type is characterized by the classical HI- Tmax

and HI-OI diagram (Fig. 2). The samples are
grouped together, according to their origin and or­
ganic matter type:

-Type Ia: lacustrine organic matter (Green River
formation, U.S.A.).

-Type Ib: lacustrine algal organic matter (Creta­
ceous, Lower Zaire-Angola).

-Type IIa: marine planctonic organic matter
(Cretaceous-Tertiary, Lower Zaire and
Kimmeridgien-Toarcien).

-Type IIb: mixed marine-terrestrial organic
matter (Miocene, Angola).

-Type III: terrestrial deltaic organic matter.
-Type IV: terrestrial origin, high rank.
-Lingnites and coals of terrestrial origin.

(a) Typical kinetic results for different kerogen types

A first examination of the kinetic results for one
sample of each kerogen type and of nearly similar
maturation rank shows the existence of a qualitative
relationship between the S2 peak shape and the
kinetic parameters. From Fig. 3, it can be seen that
high orders are linked with tailing peaks (e.g. type III
or IV) and high energies are associated with narrow
peaks (e.g. type Ib and IIa). The shape of the peaks
is also very well represented by the ratio Eln which
decreases regularly from type I to type IV kerogen.
This ratio has no physical meaning, but it will be used
as a distinctive parameter in the determination of
organic matter type.

Except for the type Ia sample (Green River), the
energies obtained by the nth-order Freeman and
Carrol method are in the range of 40-65 kcal/rnol.
This range is consistent with the results provided by
several laboratories using the multiple heating rate
experiments and statistical distribution of first-order
activation energies model (Campbell et al., 1980;
Burnham and Braun, 1985; Ungerer et al., 1986;
Braun and Burnham, 1986). In the case of the type
Ia sample, the activation energy is significantly lower
than the 50-55 kcal obtained for this material by
Campbell et al. (1980) and Ungerer et al. (1986). The
reaction order less than the unity should indicate a
perturbation in the rate of volatile release at the
beginning of the experiment. Consequently, this re­
sult seems unrealistic and this kind of sample needs
to be studied by another, more appropriate method.

(b) Kinetic results for various reference samples

From the complete results of Table 1, it can be seen
that the activation energies and reaction orders are
markedly different from one kerogen type to another.
However, they show significant evolution with the
maturity level (given by Tmax and Ro ) , for type IIa, III
and IV kerogen, as well as for lignites and coals. This
phenomenon will be discussed later.

For a better examination of the results, the mean
values and standard deviations of E, nand E [n are
given for each kerogen type in Table 2. In order to
avoid the influence of immature kerogen, only the
samples with Tmax values 430°C (or 425° for type III)
are retained. As in Fig. 3, the mean activation energy
is decreasing from 56 kcal (type Ib) to 42 kcal (type
III) and the reaction order is increasing from 0.72
(type Ia) to 3.11 (type IV). In the meantime, the ratio
Eln is regularly decreasing from 56.6 (type Ia) to 16.0
(type IV). Type Ia samples have the lowest (and most
unusual) mean activation energy and reaction order.
Coal samples show the highest mean activation en­
ergy but also a high reaction order.
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(c) Relation between kinetic and pyrolysis parameters

The kinetic parameters E and n for kerogen de­
composition are related to the pyrolysis parameters
HI (Espitalie et al., 1977), 01 (Espitalie et al., 1977)
and PI (paraffin index; Larter and Senftle, 1985).
Three main conclusions are readily drawn from the
diagrams in Fig. 4:

-the apparent activation energy depends on the
type of organic matter (diag. HI-E), and in-

creases with decreasing oxygen content (diag.
E-oI);

-the apparent reaction order increases with de­
creasing hydrogen content (diag. HI-n), as well
as with decreasing paraffin content, and thus
with increasing aromatic content (diag. PI-n);

-with increasing maturation rank, the activation
energy rises to a maximum level but the reac­
tion order still increases to values as high as 4
(diag. HI-E and HI-n).

Table l. Rock-Eval and kinetic pyrolysis data from selected samples of different origin, type and maturation rank
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Table I-Continued
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The kerogen pyrolysis curve is obtained from extracted rock (S2 peak) and R + A pyrolysis curve (S2' peak) is obtained by the new method
ofcomparative pyrolysis described by Delvaux et al. (1990). Kinetic parameters are computed by the modified nth-order Freeman
and Carroll (1958) method. R; = vitrinite reflectance; TOC = total organic carbon (wt%); HI = hydrogen index (mg HC/g org.C);
01 = oxygen index from carbonate-free samples (mg C0 2 jg org.C); Tmax= temperature of maximum hydrocarbon release during
pyrolysis of kerogen (on the S2 peak); T~,ax = temperature of maximum hydrocarbon release during pyrolysis of R + A (on the S2'
peak); E = activation energy (kcal/rnol); II = reaction order; Ejn = kinetic ratio.
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With regard with these data, it is suggested that the
global pyrolysis mechanism should be influenced by
three main partial reactions. Each of them seems to
correspond to one end-member in kerogen compo­
sition:

-for aliphatic hydrocarbon-rich kerogen (type I
and mature type lIa), the global reaction
mechanism is dominated by carbon-carbon
breaking in the aliphatic chain (first-order.
reaction with high activation energy depending
on the length of the chain: 57-70 kcal/mol).

-for aromatic hydrocarbon-rich kerogen (mature
type III and type IV), the global reaction is
related to the pyrolysis mechanism of coals
presented by Jiintgen (1984): reaction orders

between 1.3 and 2.0 (and possibly higher), with
activation energy depending on the degree of
saturation).

-for oxygen-rich kerogen (immature type II and
III), the global reaction is dominated by the
breaking of low-energy oxygen-bearing bonds.

(d) Kinetic characterization of kerogen in extracted­
rock samples

The kinetic data of Table 1 are used for the
constitution of reference diagrams for the determi­
nation of kerogen type. When using E and n values,
it appear that a good way of discrimination between
the various types of kerogen is to represent them in
an n-E diagram. The reference samples are plotted in
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Table 2. Mean values and standard deviations for the kinetic parameters of Table I

MEAN VALUES AND STANDARD DEVIATION OF KINETIC DATA

1.39 ±O.19

1.15 ±O.13

0.72 ±O.1.3:: I a :! 38. 0 ±5 . 0
:~-4---
- 1b :i 5/ - 6 0ii i! '4. ':J ± •
;;_.._---+- ----

I I a -, 55 • I ±7 • 7
._---_.

lIb id.2 ±4.9 1. 44 ±O.OS
l~·--

III 42.6 ±2.1 2.15 ±O.19

IV 43.5 ±iO.7 3. 11 ±O.GO

Coals 57.1 ±9.3 2.39 :to.53

56.6 ±IO.
u

51.8 ±4.2
48.3 ±5. I

)9.S ±2.5 43.0 ±2.7

3!+.8 ±2.5 41.5 ±5.2

:20.8 ±1.2 'J

16.9 ±2.2 J'/ ') ±3.0'+""".L.

2ifo 3 ±2.8

Only data for samples with Tmax > 430°C (425°C for type III) are retained, to avoid the influence of immature
kerogen. E = activation energy (kcaljmol); n = reaction order; Ejn = kinetic ratio.

such a diagram [Fig. 5(a)] and the boundaries
between different types of kerogen are traced. Lines
of equal maturity rank are drawn with reference
to their known position in the HI-Tmax diagram of
Fig. 2. This way, the boundaries delineate three
main evolution paths along which E and n values
progressively increase with increasing maturity rank,
depending on the type of kerogen. This evolution
could be explained by the progressive loss of oxygen­
bearing groups and the relative increase in aromatic­
ity with thermal maturation.

For high maturation rank, at the end of the oil
window (1% vitrinite reflectance), type I and II
kerogen are almost entirely degraded and the few
residual organic matter remnants should exhibit
kinetic parameters similar to type III and IV kerogen.

This n-E diagram is not very precise for the
determination of organic matter type in the case of
immature samples. The HI-E In diagram seems there­
fore complementary to the first one" including the
classical HI which is more discriminatory for imma­
ture samples [Fig. 5(b)].

Despite the unusual low E and n values for type la
Green River kerogen, the use of these data still
provide a complementary way for the determination
of their organic matter type.

KINETIC CHARACTERIZATION
OF RESINS +ASPHALTENES (R + A)

Resins + asphaltenes (R + A) in bitumen and
reservoir oil are usually considered to have been
produced by early kerogen decomposition, through
the breaking of low-energy oxygen-bearing bonds.
They have a chemical structure and composition
similar to their related kerogen (Behar and Pelet,
1985). They differ from it, mainly through their
solubility in polar organic solvents and by their
chemical composition, poorer in oxygen and richer in
hydrogen.

For R + A characterization, the kinetic determi­
nation by the modified Freeman and Carroll (1958)
method is carried out on the bitumen pyrolysis curve
obtained by comparative pyrolysis (Delvaux et al.,
1990). In the 28 samples selected the R + A are
thought to have been produced directly from the
kerogen contained in the host sample. Results are
presented in Table 1, and mean values with standard
deviations in Table 2. Similar ranges of values are
found as for mature kerogen, but there are no
energies < 36 kcal. The activation energies for R + A
are in the same range of 41-43 kcal for all the samples
of types IIa, lIb and III, but the reaction order is
increasing from type I (0.74) to type III (2.29). There
are also great differences from one type to another in
the E In ratio.

The plot of n vs E gives an n-E diagram similar to
the one for kerogen, though much simplified [Fig.
6(a)]. There also appears to be good differentiation
between R + A of different origins. Due to the simi­
larity of composition and structure between R + A
and kerogen, this diagram indicates the type of kero­
gen to which the R + A are related. The kinetic
mechanism may be somewhat comparable to the one
for kerogen, the main difference being the lack of low
E values, which is due to the depletion of low-energy
oxygen-bearing bonds. Unfortunately, this character­
istic disables a systematic evolution of kinetic par­
ameters with maturation rank for R + A. Thus, data
for R + A define no kinetic path but kinetic zones.

For a complete characterization of R + A, one
should use the T~ax in combination with kinetic
values in the form of a (E In)-T~ax diagram
[Fig. 6(b)]. This kind of diagram provides useful in­
formations about the type, origin and rank of R + A.

CONCLUSIONS

Kinetic analysis is applied in a new way, for the
rapid and complementary characterization of sedi-
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mentary organic matter. Kinetic parameters are com­
puted on comparative pyrolysis curves for kerogen
(S2) and R + A (S2'), using an nth-order modified
Freeman and Carroll (1958) method and a single
heating rate experiment.

Activation energy alone is insufficient for the
classification of organic matter. The characteristic
ranges of energies for each organic matter type are
too poorly defined (Table 2) and the standard devi-

ations are too high. This necessitates the use of a
second parameter. The reaction order shows better
defined ranges for each organic matter type, but it is
still insufficient when used alone, because of some
overlapping between types Ib, lIa and lIb. For a good
discrimination between organic matter types, the
combination of the activation energies and reaction
orders in a single n-E diagram appears to be appro­
priate for mature kerogens and also for R + A. The
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E In ratio has well-defined ranges and can be used
directly for the determination of R + A type. The EIn
ratio is also useful for the classification of immature
kerogen, in combination with the HI.

Maturation rank is given approximately by the
n-E diagram for kerogen and by the temperature
r:Uax for R + A.

The combination of comparative pyrolysis and
kinetic analysis appears to be a new and complemen­
tary method for the study of sedimentary organic
matter:

-for kerogens, it provides an alternative and
complementary determination of organic matter
type, which is particularly useful for mixtures of
organic matter of various origin;

-for R + A, it offers a practical mean for the rapid
study of these pyrolysis products which is unlike
the classical pyrolysis method of Espitalie et af.
(1977).

We suggest that this method should be applied for
each routine Rock-Eval analysis, using an appropri­
ate solftware, to provide complementary results. The
best results are obtained when the comparative pyrol­
ysis method is used first. For whole-rock samples,
kinetic results should be regarded with care.
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