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A Digital Elevation Model (OEM) of the Baikal rift basin and adjacent rift shoulders has
been made from 1/200.000 digitised topographic and bathymetric maps. It is used as a
means for visualisation of the detailed topography and bathymetry, in morphotectonic
investigation of rift basin formation in the Baikal Rift Zone. The morphology of both aerial
and underwater structures is best expressed by a combination of coloured maps, accor­
ding to the relative altitude and shaded relief maps with artificial illumination. The OEM is
used for a detailed morphostructural and tectonic analysis of the central part of the Baikal
rift basin. Relay ramps and normal fault splays of different scales are clearly shown. They
illustrate rift segment interaction during rifting propagation. In addition, the structure of the
large scale Olkhon - Academician Ridge, a partly underwater transfer zone between the
Central and North Baikal basins, is highlighted. The digital morphology helps to visualise
these structures in three dimensions and to define precisely the linking mode between
fault segments and rift basins.
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RESUME

Un Modele Numerique de Terrain (MNT) du bassin de rift du Baikal
et des epaules adjacentes a ete realise a partir de cartes topogra­
phiques et bathyrretriqucs diqitalisees a 1200.000. Ce modele est uti­
lise ici comme moyen de visualisation detaille de la topographie et de
la bathymetrie. pour l'otude morphotectonique de la formation de bas­
sins de rift dans la zone de rift du Baikal. La morphologie des structures
en surface et sous-marines est la mieux exprirnee par une combinaison
de cartes en couleur en fonction de I'altitude et de reliefs ornbres par
illumination artificielle. Le MNT est utilise pour I'analyse morphostructu­
rale et tectonique de la partie centrale du bassin du lac Barkal. Des

zones de relais et des zones de divergence entre failles norm ales sont
clairement mises en evidence. Elles illustrent Ie principe d'interaction
entre segments de rift au cours de la propagation du rifting. De plus, la
structure de la zone de transfert Olkhon-Academician Ridge, partieIle­
ment sous-Iacustre est mise en evidence, entre les bassins nord et cen­
tral du Lac Batkal. La morphologie digitale aide a la visualisation des
structures en trois dimensions. Elle permet de preciser les connexions
entre les segments de faille et entre les bassins de rift.

Mots-cles : Modele numerique de terrain, Morphostructure, Faille
normale, Faille transfert, Zone reiat, Zone divergence, Rift, Rift
BaIkal

1279-8215/00/0022-0341 $ 740

© 2000 elf exploration production, F-64018 Pau



342 D. DELVAUX, A FRONHOFFS, R. HUS AND J POORT BCREDP 22 (1998)

CONTENTS - TABLE DES MATII~RES

INTRODUCTION. 342

1. - STRUCTURE AND EVOLUTION OF THE BAIKAL BASIN
IN THE BAIKAL RIFT ZONE - STRUCTURE ET
EVOLUTION DU BASSIN DU BAiKAL DANS LA ZONE DE
RIFT DU BAiKAL.. 342

2. - CONSTRUCTION OF THE BAIKAL OEM - CONSTRUC-
TION DU MNT DU BAiKAL.. 342

3. - MORPHOSTRUCTURAL INTERPRETATION OF TOPO­
GRAPHIC FEATURES - INTERPRETATION MORPHO-
STRUCTURALE DE LA TOPOGRAPHIE.. 343

4. - OLKHON-ACADEMICIAN RIDGE TRANSFER ZONE -
ZONE DE TRANSFERTOLKHON-ACADEMICIAN.. 345

5 - OLKHON AND ZAMA FAULT SPLAYS - ZONES DE
DIVERGENCE DE FAILLE D'OLKHON ET DE ZAMA .. 352

5.1. Olkhon fault splay and Primorsky range uplift ­
Zone de divergence d'Olkhon et soulevement
de la chaine de Primorsky .. 354

5.2. Zama fault splay - Zone de divergence de Zarna.. 354

6 - ZAVAROTNY AND ULiUN RELAY RAMPS - ZONES DE
RELAIS DE ZAVAROTNY ET D'ULiUN.. 355

6.1 Zavarotny relay ramp - Zone en relais de Zavarotny 355

6.2. Uliun relay ramp - Zone en relais d'Uuun.; 355

7. - REGIONAL STRESS FIELD IN CENTRAL BAIKAL ­
CHAMPS DE CONTRAINTE REGIONALE DANS LA PAR-
TIE CENTRALE DU BAiKAL 355

8 - CONCLUSIONS. 355

9. - REFERENCES. 356

INTRODUCTION

In morphotectonic investigations of actively forming sedi­
mentary basins and mountain ranges, there is a strong need for
a practical and accurate visualisation of the detailed topogra­
phy of the land area (e.g. HALL, 1996). Since in such environ­
ment, the presence of large and deep lakes is relatively fre­
quent, it is also necessary to visualise the bathymetry of the
lake floor. High-resolution Digital Elevation Model (OEM) com­
bining digital topography and bathymetry is a very useful tool
for all investigations based on the observation and description
of the topography and bathymetry. Once the OEM is created, it
can be visualised in different ways. Coloured maps according
to the relative altitude and shaded relief maps, or a combina­
tion of the two, are the most frequently used in neotectonic and
morphostructural analysis. Satellite images or aerial photos can
be draped on the OEM, for realistic 3D displays. They can be
used in quantitative morphology, for extraction of topographic
cross sections, slope computation, etc. Shaded relief maps are
also useful for referencing the microstructural observations, so
that they can be interpreted in their context. The quality of the
model depends necessarily on the quality or scale of the topo­
graphic and bathymetric survey.

This paper presents an example of the application of OEM
to the structural and neotectonic investigation of the Lake
Baikal sedimentary depression, in South-Siberia, by combining
land topography and lake bottom bathymetry. Contoured ele­
vation data from maps of different scales were used to illustra-

te the regional morphostructures of transfer zones and fault lin­
kage in the central part of the Baikal rift basin. This paper does
not deal with structural Observations on the lake shore, nor with
the results of high resolution seismic surveys. This new data,
obtained during 1997 and 1998 campaigns will be presented
elsewhere.

Relay ramps, normal fault splays and transfer fault zones
are typical in an extensional environment (MORLEY et al., 1990;
NELSON et al., 1992 and PEACOCK & SANDERSON, 1994). They play
a major role in the development of rift basins. They result from
the propagation and linkage of originally isolated fault-boun­
ded rift segments. These kind of structures are particularly well
expressed in the transition from the Central Baikal basin to the
North Baikal basin (Fig. 3)

1. - STRUCTURE AND EVOLUTION OF THE BAIKAL
BASIN IN THE BAIKAL RIFT ZONE

The Baikal Rift Zone (Fig. 1) initiated in the Late Oligocene,
as a result of the combined influence of the India-Eurasia col­
lision and convergence, and of the Pacific-Asia subduction
(LoGATCHEV, 1993; OELVAUX et al., 1997; SAN'KOV et al., 1997).
Rifting was controlled by the morphology of the Siberian
Craton, by lithospheric scale discontinuities along its south­
western and southeastern margins, and by the combined
action of intraplate compressional stress field and locally gene­
rated extensional stresses related to lithospheric destabilisa­
tion. The long pre-rift tectonic history (MELNIKOV et al., 1994;
ERMIKov, 1994; OELVAUX et al., 1995) maintained the margin of
the Siberian Craton in a mechanically weak state. The basin of
Lake Baikal itself (Fig. 2; LEVI et el., 1997) developed first in a
transpressional to transtensional context since the Late
Oligocene (30 Ma), until the Early-Late Pliocene transition (4-3
Ma). This stage is named "slow rifting stage" by LOGATCHEV
(1993) and "proto-rift stage" by OELVAUX et ei., (1997). Since the
Late Pliocene, rifting process has accelerated, in a dominant
extensional stress field. This is the "fast rifting stage" of
LOGATCHEV (1993) or "active-rift stage" of OELVAUX et al. (1997).
Sedimentation in the rift basin was controlled both by tectonic
and climatic factors (KASHIK & MAziLov, 1994).

2. - CONSTRUCTION OF THE BAIKAL DEM

The detailed Digital Elevation Model (OEM) of the Baikal rift
basin and adjacent areas has been produced on the basis
of 1200 000 topographic maps and bathymetric charts.
Topography is based on the maps of the Central Administration
of Geodesy and Cartography at the Soviet Ministry of USSR
The sheets of the area surrounding Lake Baikal are taken from
the Pribaikalie Map Album compiled by VKF, Irkutsk, and publi­
shed in 1996. A total of 23 sheets have been digitised so far
Bathymetry is from the Bathymetric charts of Lake Baikal
(1992).

The first, and more tedious, step in the procedure involved
the manual digitisation of topographic elevation contour lines at
40 m intervals and of bathymetric contour lines at 100 m inter-
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FIGURE 1

The Baikal Rift System in Central Asia (modified according to DELVAUX et el., 1997).

Le svsteme de rift du Baikal en Asle centrale (modiiie, d'epres OELVAUX et aI., 1997).

vals. For this, the AUTOCAD computer system was used.
Manual digitisation has been preferred to computer-aided digi­
tisation, due to the complex and rugged topography. Both
topographic and bathymetric data were merged together to
constitute the input vector files, one for each 1:200000 sheet.
The data was digitised in the 1942 co-ordinate system printed
in the topographic sheets, corresponding to the Gauss Kruger
projection and Krasovsky Ellipsoid. In this system, the co-ordi­
nates are nearly equivalent to UTM co-ordinates of zones 47U,
48U and 49U, with central meridians at 99°,105° and 111° res­
pectively. To obtain the UTM co-ordinates, an amount of 2.4 km
is subtracted from the Y co-ordinate of the Gauss-Kruger 1942
co-ordinate system

If the region of investigation is included in a single UTM
zone, the previous treatment is sufficient. For larger regions, or
for regions situated at the boundary between two different UTM
zones, it was necessary to convert the geographic co-ordi­
nates into a single co-ordinate system. This is the second step
of the referencing procedure. The UTM co-ordinates were
converted first into latitudes and longitudes, then the vectorial
data was set in a single Lambert Conic Conform (LCC) projec­
tion, equivalent to the projection used in the Operational
Navigation Chart of the Defence Mapping Agency of the United
States of America as in Figure 3.

Finally, gridded heights were computed using the vectorial
data (in UTM or LCC coordinates). In this work, the OEM was
produced by the Kriging method in MICROSOFT SURFER for
Windows.

3. - MORPHOSTRUCTURAL INTERPRETATION
OF TOPOGRAPHIC FEATURES

The combination of topography and bathymetry offers a
common visualisation of landforms and lake bottom morpholo­
gy. This allows us to follow the underwater continuation of acti­
ve fault scarps known on land, and helps to relate basin struc­
tures interpreted from seismic profiling and lake shore morpho­
structure. The OEM can also be used to draw topographic and
bathymetric sections. The land and lake bottom morphology of
the Baikal Rift Zone is presented here as a shaded relief map.
This is one of the most efficient and natural ways to illustrate the
tectonic structure, landform fabric and erosion-deposition fea­
tures.

In this paper, the Baikal OEM is used to illustrate the mor­
phology of secondary basins developed between normal faults
in relay ramps and fault splays along the major rift border fault
systems of Central Baikal (Fig. 3). The geological structure of
this part of the Baikal rift basin has been studied by various
authors, combining land surveys (MATS, 1993; AGAR & KLiTGORD,
1995; DELVAUX et al., 1997); seismic profiling (HUTCHINSON et al.,
1992; SCHOLZ et al., 1993; KAZMIN et al., 1995) and underwater
studies by means of a submarine (BUKHAROV, 1996). Detailed
examination of particular areas along the major fault systems
reveals several complications, like relay-ramps between two
overlapping fault segments and fault splays. These structures
controlled the development of secondary basins and participa­
ted in the propagation of the Baikal rift basin development
towards the North.
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FIGURE 2

Digital Elevation Model (OEM) of the lake Baikal rift bas in and surrounding area,
from 1:500 000 topographic and ba thymetric maps. Arbitrary co-ord inates (km).

Modele Numencue de Terrain (MNT) du bassin de rift du lac Baikal et de la region ewrormeme.
aeoree cartes topographiques et bathymelriques a 1:500 000. ccoraoraees arb ilraires (km).
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Digita l Elevation Mode l (OEM) of Central Baikal from 1:200 000 topographic and bathymetric maps, produced by Kriging , with art ificial illumination
from the NW, inc lined at 45° Illustration of the Olkhon Island- underwater Academician Ridge transfer zone betwee n the Central and North Baikal

basins , and location of areas for detailed investigation (Fig. 4·7). Lambert Conic Conform projec tion (km) centred at 53°N , 108GE.

Modele Numericue de Terrain (MNT) de te partie centrale du bassin du Baikal, d'apres cartes topographiques et bathymetriques.9 1:200000, pro­
duit par krigeage, avec illumination enmcene du NO, inclinee a 45°. Illustration de la zone de trensiert entre les bassins nord er central du Baikal,
torcee par /TIe dOlkhon et la ride sous-tecustre Academician. Localisation des regions a 'eoae de/ai/lee (Fig , 4-7). PrOjectionLambert Con/que

Conlorme (km), cewee a 53°N, 108°E.

First , the general morphostructure of the Olkhon­
Academician Ridge transfer zone is discussed (Fig. 3). After
that, four different areas are detailed, illustrating relay ramps
and fault splays linking normal fault segments. The Olkhon and
Zama areas are examples of sub-basin development between
two splaying faults, respectively the Olkhon-Primorsky and the
Primorsky-Z unduksky faults (Figs 4, 5). The Zavarotny and
Uliun areas are examples of sub-basins controlled by a relay
ramp between two overlapp ing segments of the same normal
fault system, the Baikalsky and Barguzin faults respectively
(Figs 6, 7). These structures are of different scales, but they
display similar morphologies.

4. - OLKHON-ACADEMICIAN RIDGE TRANSFER ZONE

The Central Baikal basin is separated from the North Baikal
basin by a transfer zone formed by a system of horsts bounded
by normal faults {Fig. 3}. They include the Prtolkhon block, the
Olkhon Island and the underwater Academician Ridge, in pro­
longation of each other. The north extremity of the Central
Baikal basin is closed by an en echelon right-stepping beret
system, formed by the northern extremity of the Academic ian
Ridge, the Holy Nose (Svyatoi Nos) Peninsula and the Barguzin
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OEM of the Primorsky-olkhon fault splay belween the Central Baikal basin and the Small sea . from 1:200 000 topographic and bathymetric maps .
UTM co-ordinates. zone 48U.

a: Combination of shaded relief and coloured altlnlelry.
b: 3-D block diagrams

MNT de 18 Z0fI9 de divergence de faille de Primorsky-Olkhon entre Ie bassin central du Baikal el la Small $ea, d'apres ca-tes topograpniques 81
balhymelriques a 1200 000. Coordonnees UTM, zone 48U
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tr : Blocs d!agramme 3-D.

Range. The normal faults cont rolling this structure mostly reac­
tivate Early Paleozoic ductile shear zones and Late
Paleozoic-Mesozoic brittle faults. The lop of basement of the
Academician Ridge is covered by a thin basal layer of deltaic
sediments of probable Middle-Late Miocene age , then by fine­
ly stratified diatom-rich lacustrine sediments (KAzMIN er al.,

1995). It was the site of several boreho les drilled through the
ice during the winter, by the Baikal Drilling Project. The BDP-96­
1 drill hole penetrated 300 m of sediments on the Academician
Ridge , and the core base corresponds to ca. 5 Ma (BDP­
Members, 1998), indicating that the ridge has remained in an
underwater position since at least the Early Pliocene.
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In the classification of MORLEY et al. (1990), the Olkhcn­
Academician Ridge transfer zone is of synthetic overlapping

type. It links two NE-trending asymmetric grabens with the
major border fault on the northwestern side, and a secon dary

border fault on the opposite side.

5. - OLKHON AND ZAMA FAULT SPLAYS

The Olkhon and Zama fault splays correspond to the bran­
ching of two diachronic faults, progressively diverging from
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each other (Fig. 4, 5). In both cases, the youngest fault deve­
loped in the footwall of the oldest one. They were initiated at dif­
ferent times, probably related to different kinematic conditions.
A system of horsts and grabens forms between the two
splaying faults in relative parallelism with the general trend.
Both faults have a different basement control, the oldest ones
reactivating the gneissic structure of the Paleoproterozoic
Olkhon Shear Belt and the youngest ones reactivating the Early
Paleozoic mylonitic texture of the Primorsky Shear Zone (see
MELNIKOV et el., 1994 and DELvAux et el., 1995, for the basement
structures in this area).

The sub-basin development between diachronic fault
splays appears to be a major process in the broadening of the
rift basin and its propagation from the Central Baikal basin to
the North Baikal basin. By this way, the hangingwall of the
oldest fault is transformed into the footwall of the newest fault,
in a mechanism already suggested by AGAR & KLiTGORD (1995).

51 OLKHON FAULT SPLAY AND PRIMORSKY RANGE UPLIFT

The Central Baikal basin is bordered on its north-western
side by the Olkhon fault and its footwall is formed by the
Priolkhon Block and Olkhon Island (Fig. 4a, b). The deepest
part of Lake Baikal (1640m) is located at the foot of the Olkhon
Island. From the interpretation of multichannel seismic profiles
(HUTCHINSON et al., 1992), the Olkhon fault has been active
during all the development of the Central Baikal basin, which
probably started in the Late Oligocene (POPOVA et ai, 1989). At
Buguldeika (Fig. 4a), a new fault (Primorsky fault) is branching
to the northwest, separating the Priolkhon Block from the
Primorsky Range. The trace of this fault is rectilinear, slightly
curved, as opposed to the Olkhon fault. Its amplitude of normal
displacement increases gradually to the northeast. Movement
is predominantly normal, as shown by morphological evidence
and fault-slip indicators (DELVAUX et al., 1997). Along trend, the
structure of the hanging wall changes from a half-graben
(Priolkhon Block), to full graben (Olkhon Island), although still
asymmetric, with the progressive individualisation of the Small
Sea basin (Fig. 4b).

The footwall of the Primorsky fault, the Primorsky Range,
gradually rises in altitude as the vertical throw of the Primorsky
fault increases (Fig. 4a, b). The age of activation of the
Primorsky fault is intimately related to the development of the
Small Sea basin and the Primorsky Range. AGAR and KLiTGORD
(1995) estimated the age of formation of the Small Sea at less
than 1 Ma, based on sedimentary thickness and sedimentation
rate. The age of the Primorsky Range uplift cannot be determi­
ned precisely, but it profoundly influenced the drainage pattern
out of Lake Baikal. Presently, the waters from Lake Baikal over­
flow through the Angara river, to the Yenissei (Fig. 1, 2). It has
been shown by MATS (1993), MALAEvA et al. (1994) and TROFIMOV
et al. (1995) that during the Middle Pleistocene, Lake Baikal
was flowing through the Manzurka valley, to the Lena river. The
Manzurka valley was connected to Lake Baikal across the pre­
sent Primorsky Range, through the Upper Buguldeika river The
latter was connected successively to the Anga, Lower
Buguldeika and Goloutsnaya valleys. All these valleys are lar­
ger than needed for their present drainage. TROFIMOV et al.
(1995) describe alluvial deposits with cross bedding, dated
between 390±80 Ka and 115±30 Ka. Alluviums of the lower ter­
rasses of the Buguldeika, Manzurka and Lena rivers are dated
between 133±30 Ka and 78±20 Ka. When observing the OEM,

it appears that older outlet channels across the Primorsky
Range might even have existed more to the northwest, via the
Anga-Buguldeika, Sarma-Left Ilikta and Zunduk-Right Ilikta
river valleys (Fig. 2, 4), but their alluviums are probably concea­
led under Late Pleistocene glacial deposits. The Goloutsnaya,
lower Buguldeika and Anga valleys were probably all connec­
ted to the upper Buguldeika valley, connected itself to the
Mansurka valley, an affluent of the Lena river. The Left and
Right Ilikta rivers are connected directly to the Lena river. All
these drainage systems form large paleovalleys, crossing indif­
ferently the footwall and hangingwall of the Primorsky fault. On
the southeastern slope of the Primorsky Range, the flow of
these rivers is presently reversed, towards Lake Baikal, but the
dimensions of the valleys are no more in accordance with the
importance of the rivers flowing in them. The isthmus between
Olkhon Island and Priolkon (Olkhon Gate) likely constitutes a
now underwater segment of the Sarma paleo-outlet channel
(Fig. 4). Further to the northeast (Fig. 5a), the Zunduk river (flo­
wing SE) is in the direct alignment with the Right Ilikta river (flo­
wing NW to the Lena river). The 3D block diagrams, confirmed
by field check, illustrate the presence of an elongated depres­
sion crossing the Primorsky Range, and linking these two val­
leys (Fig. 5b).

The altitude of the highest points along the inferred paleo­
outlet systems progressively increases from the present
Angara river outlet (456 m), to the Buguldeika-Manzurka divi­
de (780 m), Sarma-Left lIikta divide (900 m) and to the
Zunduk-Right Ilikta divide (1104 m).

The evidence reviewed above suggest a progressive SW
migration of the outlet of Lake Baikal as a consequence of the
rising of the Baikalsky-Primorsky rift shoulder. Age determina­
tions of the Manzurka alluvial sediments point to a recent uplift
of the Primorsky Range adjacent to the Central Baikal basin
during the Middle Pleistocene. In conclusion, the depressed
saddle along the north-western margin of the Baikal basin,
which controls its outlet, propagated southwestwards together
with the diachronous uplift of the Baikalsky-Primorsky Range.
This was coeval with the progressive opening of the Small Sea
basin during the last 1 Ma.

5.2. ZAMA FAULT SPLAY

The Zama sub-basin developed along the western shore of
Lake Baikal at the junction of the Small Sea and the North
Baikal basin (Fig. 5a, b). It was controlled by the Zunduksky­
Primorsky fault splay. It is bordered on its north-western side by
the N40oE-striking Primorsky fault and on its southeastern side,
by the N60oE-striking Zunduksky fault. The Zama basin and the
Zunduk horst formed between these two faults. Towards the
southwest, the Primorsky fault branches to the Zunduksky fault
and they merge together. To the northeast, the Zunduksky fault
scarp disappears in the water, while the Primorsky fault scarp
determines the location of the lake shore and increases in
height towards the northeast. The Primorsky fault scarp is more
rectilinear than the Zunduksky one. This seems to be correla­
ted to the fact that the Zunduksky fault reactivated Proterozoic
high grade gneisses and marbles (Olkhon series), whereas the
Primorsky fault reactivated the Early Paleozoic Primorsky mylo­
nite zone.

Both faults are currently active. Multichannel (KAZMIN et al.,
1995) and high-resolution single channel (De Batist, pers.
comm) seismic profiles show that the Zunduksky fault dis-



BCREDP 22 (1998) NORMAL FAULT SPLAYS, RELAY RAMPS AND TRANSFER ZONES INTHE CENTRAL PART OF THE BAIKAL RIFT BASIN 355

places recent sediments in the North Baikal basin, and a fresh
morphological scarp is seen along the Primorsky fault.
However, since the Primorsky fault is much less eroded than
the Zunduksky fault, it can be supposed that the Zunduksky
fault started its activity earlier,

6, ~ ZAVAROTNY AND ULiUN RELAY RAMPS

The Zavarotny and Uliun relay ramps developed between
two contemporaneous overlapping segments of the same nor­
mal fault system, parallel to each other (Fig, 6, 7), The relay
ramps appear as a complex system of basins and horsts, that
might be oblique to the major fault trend,

MORLEY et el. (1990) defined relay ramps as synthetic over­
lapping transfer zones between en echelon normal fault seg­
ments with formation of a strike ramp between them, PEACOCK
& SANDERSON (1994) examined small-scale relay ramps and
compared them with larger scale ramps, They describe them
as transfer zones occurring between normal fault segments
having the same dip direction, In the present Baikal example,
the relay ramps are complicated by the formation of an anti­
thetic normal fault between the two overlapping synthetic
faults, leading to the development of a horst and graben sys­
tem,

6,1, ZAVAROTNY RELAY RAMP

The Zavarotny relay ramp developed along the Baikalsky
fault, on the north-western margin of the North Baikal basin
(Fig, 6a, b), This structure is partly underwater and presents a
good application of the Baikal OEM, incorporating bathymetry
with topography, A ramp system in the area of cape Zavarotny
was suspected from the bathymetric chart, but the bathymetry
was not detailed enough to investigate its structure, Therefore,
a detailed echosounding survey was conducted in this area
(MATTON & KLERKX, 1996), The echosounding data was calibra­
ted and merged in the OEM with the rest of the lake bathyme­
try and the adjacent land topography, The resulting OEM (Fig,
6a, b) shows the complexity of the relay ramp, with the deve­
lopment of small secondary basins trending N-S, oblique to the
general structure, The structure of the basins were further
detailed by hiqh-resolution seismic profiling (C, Matton, unpu­
blished data),

6.2, ULIUN RELAY RAMP

The Uliun relay ramp developed along the Barguzin fault, on
the northwestern margin of the Barguzin basin (Fig, 7a, b), The
ramp is longitudinally segmented in a system of secondary
horst and graben, separated by a synthetic normal fault. Field
structural control and fault kinematic indicators confirm the
dominant dip-slip character of the normal faults (OELVAUX et et.
1997),

7, ~ REGIONAL STRESS FIELD IN CENTRAL BAIKAL

A pure extensional stress field at crustal level was inverted
from 22 earthquake focal mechanism data from Central Baikal
region, compiled from GOLENETSKY et el. (1996), PETIT et et.
(1996) and SOLONENKO et el. (1997), using the TENSOR pro­
gram (OELVAUX, 1993; Fig, 8), The direction of horizontal princi­
pal extension (5I1ma) trends N125°E ±4° and the shape factor
R is 0.47, The focal planes are all dip-slip to oblique-slip, but
there are no pure strike-slip mechanisms, A similar conclusion
is reached from detailed fault-slip analysis in three of the areas
considered, for the active rifting stage (OELVAUX et el., 1997),
Therefore, regional extension can be estimated to be sub­
orthogonal to the modern structures of the fault splays and
relay ramps considered,

The North Baikal basin trends NNE-SSW and began to form
later than the NE-SW trending Central basin, The sequential
development of the systems of rift basins in Central Baikal has
been influenced by the reactivation of pre-existing zones of
deformation related to the Paleozoic and Mesozoic history, and
by the evolution of stress field during rifting, Presently, the trend
of the North Baikal basin is in slight obliquity with the NW-SE
direction of the horizontal minimum stress, This points to an
oblique rifting mechanism, similar to that in the northern North
Sea (FAERSETH et el. 1997)

8, ~ CONCLUSIONS

This paper presents an illustration of the exploitation of a
detailed OEM, combining land topography and underwater
bathymetry, for the morphostructural investigation of the Baikal
Rift basin, It allows to detail the morphology of recent tectonic
structures, developed during the last stage of evolution of the
Baikal Rift (Late Pliocene-Quaternary), The relief and lake bot­
tom morphology well reflect the major active tectonic struc­
tures, and the OEM helps to visualise them in coloured maps
with hill shading and 3D block diagrams, It also allows conti­
nuous observation from the lake shore structures to their under­
water counterparts,

The OEM illustrates transfer fault zones linking the North
Baikal and Central Baikal basins, and also the linking mode
between different segments of the same fault zones, Nice
examples of normal fault splays and normal fault relay ramps
are evidenced, at different scales, some of them partly under­
water. These linking modes are in accordance with the models
of transfer zones defined in the literature, They show that Lake
Baikal is also controlled by the development, propagation and
linkage of originally isolated fault segments and rift basins,
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FIGURE 8

Stress tensor obtained from the inversion of 22 earthquake focal mechanisms for the Central Baikal area. Stereograms (Schmidt net, lower hemi­
sphere) with traces of focal planes, and slip vectors, histogram of observed slip-theoretical shear deviations. - a: undifferentiated row data, before

inversion and selection between movement and auxiliary planes (two focal planes for each focal mechanism); - b: preliminary stress tensor obtained
by the right dihedral method; - c: final stress tensor after rotational optimisation and selection of one movement plane for each focal mechanism;

- d: rose diagrams of dip and strike of selected movement planes, and of inclination and azimuth of slip vectors.

Tenseur de contrainte obtenu par I'inversion de 22 meceniemes au foyer de tremblements de terre de la region centrale du Baikal. Stereoqremmes
(Schmidt, hemisphere intetieur) avec traces cyclographiques des plans focaux, et vecteur de glissement, et histogramme des deviations entre

glissements ttieonques et observes. - a : donnees brutes non diiterenciees. avant I'inversion et la selection entre les plans de mouvement et plans
auxiliaires (deux plans focaux pour chaque mecanisme) ; - b . tenseur de contrainte prehmitieire obtenu par la methode des aiedres droits ;

- c : tenseur de contrainte obtenu par optimisation rotationelle et selection du plan de mouvement pour chaque mecanisme; d : diagrammes en
rose de I'inclinaison et la direction des plans mouvement seiectionres, et de !'inclinaison et I'azimut des vecteurs glissement.
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