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Flash Floods in the Rwenzori Mountains—
Focus on the May 2013 Multi-Hazard
Kilembe Event

Liesbet Jacobs, Jan Maes, Kewan Mertens, John Sekajugo,
Wim Thiery, Nicole van Lipzig, Jean Poesen, Matthieu Kervyn,
and Olivier Dewitte

Abstract
Over the past 50 years, at least seven major flash floods have affected catchments of the
Rwenzori Mountains. The Rwenzori Mountains are not only subject to flash floods; forest
fires, earthquakes and landslides occur as well. Many of the flash floods therefore
co-occurred with other hazards. One of the most devastating of these events occurred on
May 1st 2013, in the Nyamwamba catchment. Here we reconstruct the circumstances under
which this flash flood event was triggered and its effects in this multi-hazard region. This
includes the identification and characterization of different processes acting upon the
catchment dynamics, their controlling and triggering factors and the estimation of the
damaging effects of the flash flood within the catchment. The combined occurrence of
intense rainfall, a forest fire having burned 18% of the catchment area and the occurrence of
29 landslides providing debris to the river system, induced a debris-rich and very
destructive flash flood which caused several fatalities, the destruction of 70 buildings,
several bridges, a hospital and a school, a tarmac road and several life lines. Peak flow
discharge is estimated between 850 and 1300 m3/s. This case-study demonstrates that flash
floods in the region should not be considered as self-determined phenomena but as a result
of several cascading and interacting hazard processes including wildfires and landslides,
occurring within a short time period.
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Introduction

Flash floods represent an interesting case of multi-hazards as
they often result from interactions with forest fires or land-
slides. Although in recent years a lot of progress was made
in quantifying feedback mechanisms and interactions
between hazards, large datasets are often required. In the
African context, the required intense monitoring of envi-
ronmental systems and data collection is particularly chal-
lenging, due to financial or political constrains and the
physically remote character of its mountainous regions.

Western Uganda, and the East African Rift in general,
simultaneously appears as a hotspot on global maps for
seismic, landslide and cyclone hazards (Hong and Adler
2008; PreventionWeb 2009). The lacuna in even the basic
documentation of hazardous events however remains large.
This is also the case for the Rwenzori Mountains. This latter
region was affected by flash floods at least seven times over
the past 50 years. The events often occurred together with or
following major earthquakes or landslides. In comparison to
the latter, flash floods on average cause more fatalities per

event and each typically displace dozens to hundreds of
households (Jacobs et al. 2016a).

The aim of this study is to increase our understanding of
flash flood events in these data-poor and high energy relief
areas, using a case study from the Rwenzori Mountains
where hazard interactions are expected. For this particular
case-study, the occurrence of a large fire further complicates
the spectrum of potential hazard interactions. With this study
we aim to use a combination of well-established methods of
different disciplines to better document and understand these
multi-hazards in regions with low accessibility.

Study Region

Regional Setting: The Rwenzori Mountains

The Rwenzori Mountains lie on the border of DR Congo and
Uganda. They cover an area of ca. 3000 km2 and reach an
altitude of 5109 m a.s.l. (Fig. 1). Intense rainfall, high
seismic activity and landslides (Jacobs et al. 2016a, b) affect

Fig. 1 location of the Rwenzori
Mountains and the Nyamwamba
river catchment (Jacobs et al.
2016c)
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the region. A full description of the horst mountain’s
topography, lithology, soils, climate and seismic activity can
be found in Jacobs et al. (2016a).

Nyamwamba Catchment and the Town
of Kilembe

The town of Kilembe (30.01°E–0.20° N, Fig. 1) is located in
the Nyamwamba catchment. In Kilembe, the catchment
covers 107 km2 and hosts the Nyamwamba river. The
lithology consists of gneiss, mica schist with quartzite
interbeds and moraine deposits (Fig. 2a; GTK Consortium
2012). Slope gradients regularly exceed the local and global
thresholds for slope stability (Jacobs et al. 2016a; Fig. 2b).
The catchment is strictly subdivided by a park boundary at
1700 m a.s.l (Fig. 2c). Below this boundary, agriculture and
built-up areas are the major land uses. Above 1700 m a.s.l.
the national park starts with a dense forest belt up to 2400 m.
Above the forest belt, a bamboo belt extends up to 3000 m
a.s.l. where the heather forest and shrub zone starts
(Eggermont et al. 2009). At the highest elevations in the
catchment, rock outcrops and bog land prevails (Fig. 2c).
Permanent glaciers are present on the Rwenzori peaks, but
the Nyamwamba catchment does not drain the glacier area.

On May 1st 2013, Kilembe was affected by a fatal flash
flood. According to an online report of NTV Uganda (2013),
the flood started in the afternoon, and river flow was already

strongly reduced (but still above normal) on the 2nd of May.
A local NGO reports that the flood occurred around 2 p.m.,
destroying several bridges after intense rainfall which started
at 8 a. m. (LIDEFO 2013). Based on these reports, the flash
flood was characterized by a rapid onset with very high
initial discharges and a relative short duration. An event of
this magnitude was unprecedented in recent years, with an
event of similar magnitude observed on April 7th 1966
(Binego 2014 and personal communication with local
stakeholders). Most reports on the 2013 event mention
intense rainfalls but other potential factors such as moun-
tainous forest fire and landslides in the upper Rwenzori are
also reported to potentially have played a role (Binego
2014). In February 2012, the upper part of the catchment
was indeed burned. This fire was reported by the Rwenzori
Trekking Service and at the time of the fire all touristic
activities were suspended and the Kilembe trail was evacu-
ated. The extent of the fire was never mapped. Landslides
have also occasionally been reported in the catchment over
the past decades, but no spatially explicit inventories have
ever been produced for this catchment.

Methods

The Nyamwamba river is not monitored for runoff discharge
or sediment transport and no systematic investigation was
carried out before, during or directly after the event. The

Fig. 2 Biophysical properties of the Nyamwamba catchment. a catch-
ment lithology (Source GTK Consortium 2012); location of all
identified landslides are indicated by dots b catchment slopes derived
from SRTM 1” at 30-m resolution (USGS 2014): white dot represents
Kalalama camp rainfall station, blue dots represent cross sections

selected for discharge estimation, c land cover map derived from
supervised classification of the SPOT 6 image shown in Fig. 4. Black
arrows show the location of the illustrated landslides in Fig. 5a, b
(Jacobs et al. 2016c)
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methodology used here is therefore not based on high-input
models or extensive field monitoring data but instead
includes a combination of remote sensing, exploratory
post-disaster field work and field reports by disaster relief
organizations, specifically suited for non-accessible,
data-poor, multi-hazard environments.

Reconstruction of the Triggering Rainfall Event

For the period preceding the flood, rainfall data (temporal
resolution of 24 h) from two rain gauges in the catchment
where made available by Africa Nyamwamba Ltd (personal
communication). The rain gauges are located in the upper
catchment at 3140 m a.s.l. (Kalalama camp, Fig. 2b) and in
Kilembe town (1500 m a.s.l). Data from four rain gauges
located in the adjacent catchment to the north of the
Nyamwamba catchment were made available by the Uganda
Wildlife Authority (UWA). A regional climate model output
on a 7 � 7 km2 resolution between 1999 and 2008 pre-
sented by Thiery et al. (2015) is used to estimate the
recurrence interval of the triggering rainfall event.

Reconstruction of the Peak Flow Discharges

For the reconstruction of the peak flow discharges of the
Nyamwamba river, Manning’s equation Eq. (1) was applied
to two river cross sections (Figs. 2b and 3).

Q = 1/n � A � Rð2=3ÞS0:5 ð1Þ
With Q the river discharge, A the river cross section, R the

hydraulic radius, n the Manning roughness coefficient and
S the water surface slope. For the first cross section, mea-
surements of the river cross section and local slope were

made and the roughness of the river bed was described in the
field (Fig. 3a). As a second cross section, a bridge was
selected downstream of the first cross section (Fig. 3b) where
the water reached the level of the tarmac road. Here the local
slope was estimated using a 1:50,000 topographic map
(Department of Lands and Survey Uganda 1972). The bridge
itself is not supported by piers and during peak discharge the
water level reached the tarmac of the bridge (Fig. 3b).

Manning’s roughness coefficients were estimated by using
descriptive data by Barnes (1967) and tables by Chow (1959)
and by the empirical equation for mountain rivers by Jarret
(1989):

n ¼ 0:32 � S0:38 � R�0:16 ð2Þ
To reduce uncertainty, the estimated discharges were first

compared to the global maximum possible discharges (Qp)
with regard to catchment size (C) (Lumbroso and Gaume
2012):

Qp ¼ 500 � C0:43forC[ 100km2

orQp ¼ 100 � C0:8forC\100km2
ð3Þ

As a second check, the flow velocities (v) and
Froude-number (Fr) were calculated using the following
equation with g the acceleration due to gravity (m/s2) and d
the mean flow depth (m) (Lumbroso and Gaume 2012):

Fr ¼ v=ðd � gÞ0:5 ð4Þ
Manning’s equation as applied here holds for open nat-

ural channels. The bridge at the second cross section was
however overflown with water at peak discharge. Therefore
a pressure flow regime is more likely (Brunner and Hunt
1995). In the fully submerged scenario, the flow within the
cross section of the bridge, can be calculated using following
equation:

Fig. 3 River cross-sections selected for peak flow discharge estimations
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Qpr ¼ C1 � A � ð2 � g � H1Þ0:5 ð5Þ
With C1 the discharge coefficient (typically 0.8), A the

cross section (m2) and H1 the elevation difference between
upstream and downstream energy gradelines (m) (Brunner
and Hunt 1995). Footage taken a day after the flood shows
that a rough estimation of the H1-value at max. 2 m
(±0.5 m) is reasonable (Kizito 2013). For the total peak flow
discharge, also the flow overtopping the bridge should be
taken into account but in this case, this is negligible com-
pared to Qpr (Jacobs et al. 2016c). Equations 3, 4 and 5
serve as a constraint to the estimated peak flow discharges
using Manning’s approach.

Reconstruction of the Factors Potentially
Increasing the Flood Magnitude

1. Fire reconstruction

To identify the timing and extent of the fire, the MOD-
VOLC algorithm was used (Wright et al. 2004) through the
online application of the University of Hawai’i (2004).
Details on the method can be found in Jacobs et al. (2016c).

2. Landslide identification

To identify the landslides occurring at the time of the
flood, a combination of Google Earth (GE) images (Google
Earth 2014a), SPOT 6 images and field observations are
used. The use of GE post-event Digital Globe images
(February 2014, spatial resolution <1 m) allows the identi-
fication of recent landslides. A field survey in September
2014 serves as a validation of the landslides indicated on the
GE images. A comparison of these results with a pre-event
SPOT 6 image acquired in January 2013 (1.5 m resolution,
pan-sharpened) enables the identification of landslides that
occurred after January 2013 or that were reactivated between
January 2013 and February 2014. These slides are consid-
ered to have occurred during the rainfall event of May 1st
2013 (for details, we refer to Jacobs et al. 2016c).

Estimating Damage Caused by the Flash Flood

By using pre and post-event satellite imagery (Google Earth
2010, 2014b), externally available reports and field obser-
vations, a damage inventory for this flood was assembled
Jacobs et al. (2016c).

Results

Rainfall Conditions Triggering the Flood

On May 1st 2013, 180.6 mm of rainfall was measured at
Kalalama camp (Fig. 2b) and 98.3 mm in Kilembe. The
days preceding the event were characterized by moderate to
low rainfall amounts. Based on the high-resolution regional
climate model results by Thiery et al. (2015), the 24 h pre-
cipitation limit of 180.6 mm was exceeded four times at
Kalalama camp between 1999 and 2008 and its estimated
return period is 2.9 years. From reports on this flash flood
(LIDEFO 2013; Reliefweb 2013), the 98 mm rainfall
observed on May 1st in Kilembe town was concentrated in
ca. 6–8 h. The return periods for this rainfall observed over
6–8 h was calculated and found to range from 6.6 to
5.3 years respectively.

Peak Flow Discharge Estimations

Summary data and the Manning’s discharge estimated at the
two cross sections are shown in Table 1. The peak flow
discharge estimates vary from ca. 850 m3/s–ca. 1900 m3/s
and depend strongly on the applied Manning’s coefficient.
All the estimated discharges fall far below the envelope
maximum discharge of ca. 3800 and 3500 m3/s for catch-
ments of 84.7 and 107 km2 respectively, calculated using
Eq. 3. The pressure peak flow discharge calculated using
Eq. (5) is estimated to be 910 m3/s (±13%) for the second
cross section.

Table 1 Cross-section
characteristics and estimated
peak-discharges, flow velocities
and Froude numbers

Discharge point 1 (C = 84.7 km2) Discharge point 2 (C = 107 km2)

Parameter Q (m3/s) V (m/s) Fr Q (m3/s) V (m/s) Fr

A (m2) 190 181

P (m) 79 35.5

R (m) 2.40 5.09

S (m/m) 0.06 0.045

D (m) 2.48 8.68

n-estimate 0.06 1387 7.3 1.5 0.06 1891 10.5 1.1

0.075 1110 5.8 1.2 0.075 1513 8.4 0.9

Jarret’s n 0.098 849 4.5 0.9 0.088 1290 7.1 0.8
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Fire

A fire was detected on MODIS images between the 9th and
11th of February 2012 and covered an area of 42 km2

(Fig. 4). The delineated fire corresponds well to the occur-
rence of bare rock visible on the SPOT6 image taken in
January 2013, i.e. almost one year after the fire (Fig. 4). This
bare rock was also observed in the field in September 2014.
A total burned area of 19 km2 was located within the
Nyamwamba catchment, accounting for 18% of its surface
area at the second cross section. A total cumulative rainfall
of <0.2 mm was measured in the four weeks preceding the
fire (Jacobs et al. 2016c).

Landslides

Two categories of landslides are distinguished: (1) landslides
adjacent to the river with lengths typically equal or smaller
than twice the maximal width, hereafter referred to as Type 1
(Fig. 5) and (2) debris flows or slides with typically a narrow
run-out zone, not necessarily connected to the river system
(length typically larger than three times the maximal width,
Type 2; Fig. 5). Based on field observations of deep scour

and the typically wide base of the Type 1 landslides, they are
interpreted to have been triggered by scour and bank failure
at the slide foot. Type 2 landslides are triggered directly by
rainfall. This distinction is relevant because of their different
triggering mechanism and their different role in the hazard
interactions. Generally we consider that Type 2 landslides
are triggered at their top, while the Type 1 landslides are
triggered close to their base.

In total, 67 landslides are identified, covering an area of
207 � 103 m2. On May 1st 2013 50 slides were activated
and 5 slides reactivated. Of these slides, 15 landslides belong
to Type 1 slides. All except 1 of this type of landslide were
triggered on May 1st 2013 by high river discharge. These
Type 1 slides account for 58% of the surface of landslide
bodies that are candidates for debris supply to the river on
the 1st of May 2013. The remaining slides consist of 34
Type 2 slides and six unclassified slides. No evidence of
river damming was observed in the field, however a sys-
tematic survey of the river channel was not possible due to
its poor accessibility. Therefore (partial) landslide damming
cannot be ruled out with certainty.

Based on the lithological map (GTK Consortium 2012),
landslides are mainly concentrated on the mica schists and
moraine deposits (70 and 18% of the landslides respectively)

Fig. 4 Extent of the fire overlain
on the SPOT6 pan-sharpened
image acquired in January 2013
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even though gneiss is the dominant lithology in the catch-
ment (55% of the catchment). When analyzing the distri-
bution of slope angles of the catchment in comparison to the
distribution of slopes where the landslides occur, a concen-
tration of slides on the steeper slopes can be observed with
60% of the landslides occurring on slopes greater than 30°.

Damage Estimations

The damage inventories are given in Table 2. The buildings
destroyed or damaged show both signs of water damage as
well as damage through the impact of large boulders
(Fig. 6a–c). These transported boulders have a diameter

Fig. 5 Illustration of the two landslide types. a, c landslides adjacent
to the river with large width-to-length ratios. b, d debris flows with a
narrow run-out zone. Top landslides observed with GE images and

bottom examples observed in the field do not depict the same
landslides, but serve as illustration
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exceeding 1.5 m (Fig. 6d). The foundation of the buildings
nearest to the river bed were often completely destroyed
(Fig. 6b). Furthermore, the damage to infrastructure and
specifically buildings, tarmac roads and bridges can only be
explained by the large volume of debris transported by
this high-energy torrent. The increase in area covered by
debris in the Nyamwamba valley up to Kasese town is
34.4%.

Discussion

Reconstruction of the May 2013 Event

The rainfall depth in the upper catchment was exceeded four
times in the past 10 years and therefore not unusual. How-
ever in the past decades, no flash floods of similar magnitude
were reported in this catchment (Jacobs et al. 2016c).

Table 2 Damage inventory summary. Reports used: ActAlliance (2013), Reliefweb (2013). GE = Google Earth FW = Field Work

Type Reported damage GE FW

Fatalities 6–8 N/A N/A

Community
infra-structure

Kilembe Hospital partially destroyed, staff quarters entirely destroyed,
Bulemba primary school entirely destroyed

N/A N/A

Lifelines 2 pipelines and several drinking wells destroyed, hydro power station
blacked-out

N/A N/A

Housing
infra-structure

70 buildings destroyed 57 buildings destroyed 66 buildings
destroyed, 9
damaged

Road
infra-structure

5 bridges washed away 3 bridges and 470 m of
tarmac road destroyed

N/A

Fig. 6 Examples of damage caused by the flood. a River bed and scour, b destruction of house foundation (white arrow), c destruction of house
due to impact from debris (black arrow), d illustration of boulder size frequently found in the valley (backpack for scale)
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This indicates that the observed heavy precipitation cannot
be considered to be the only factor causing this flash flood.

Using several cross-checking approaches (see details in
Jacobs et al. 2016c), peak flow discharges ranging between
ca. 850 m3/s at the first cross section (based on the Man-
ning’s peak flow discharge estimation) and 910 m3/s (based
on the pressure discharge calculation) at the second cross
section are identified to be the most realistic. The velocities
associated with these discharges range from 4.5 to 5 m/s,
which is a good indication for debris transport (Lumbroso
and Gaume 2012). These discharge estimations are almost
two orders of magnitude larger than the mean daily historic
discharge measured on two neighbor rivers with the same
climatic and topographic conditions as river Nyamwamba
(Jacobs et al. 2016c).

Increase in peak discharges is generally considered to be
a primary response after a wildfire (Moody and Martin
2001). Indeed, the order of magnitude and exceptionality of
this peak flow discharge does not correspond to the rela-
tively frequent recurrence of the triggering rainfall depth
indicating the need to consider the effects of the fire and
landslides.

The landslides (re)activated on May 1st 2013 also
aggravated the nature of the flood by supplying debris to the
river flow. Some of the landslides are furthermore indirectly
triggered by the fire. Although none of the landslides
occurred in the burned area, more than half of the
debris-supplying landslides are triggered at least partially by
an increased river flow which for this flood event, as stated
above, can mainly be explained due to the fire. This illus-
trates the importance of distinguishing between the two
types of landslides. All these interactions need to be taken
into account to fully understand the potential hazard inter-
actions and cascades.

The spatial distribution of landslides is strongly con-
nected to the occurrence of moraine deposits and mica
schists and on slope angles above 35°. Catchments in the
Rwenzori Mountains with similar topography and lithology
are expected to be particularly hazardous for floods by
supplying debris to the river system.

The reconstruction of damage using satellite images
provides realistic estimates of the number of buildings and
their concentration in space. Limited field work is advised to
have an idea about the importance of debris transport in the
damage patterns.

Probability of Future Flash Flood Events

With an estimated return period of maximum 6.6 years, the
rainfall event of May 1st 2013 is not exceptional. However

the flash flood triggered by this event does not have the same
frequency, indicating the importance of assessing the prob-
ability of other phenomena like fire or landslides to assess
the potential for similar flood events.

Although the February 2012 fire was unique in terms of
size and elevation over the last 15 years, traces of previous
fire in the Rwenzori Mountains were found by Wesche et al.
(2000). Because it is projected with medium confidence that
periods of drought will intensify in East-Africa under
anthropogenic climate change (Niang et al. 2014), the like-
lihood of long periods of drought preconditioning fires is
expected to increase as well. Considering that fires may also
be induced by human activity in the Rwenzori, an increased
human presence due to poaching or tourism could also
increase the frequency of fire triggers.

The role of landslides in aggravating flash flood can also
be linked to the last major flash flood of comparable mag-
nitude which occurred in the catchment on April 7th 1966
(Binego 2014). A series of large seismic shocks starting
from March 20th 1966 (M = 6.1) (UNESCO 1966) triggered
landslides throughout the Rwenzori Mountain range. These
last two major flash floods in the catchment show that the
role of landslides in the propagation of flash floods cannot be
neglected and their probability should be assessed and taken
into account when considering flash flood hazard. Finally,
with a projected increase in heavy precipitation events, the
frequency of rainfall-triggered landslides and flash floods is
likely to increase (Niang et al. 2014).

Conclusions
The Kilembe case study shows that even a rainfall event
with a relatively short return period can cause a disastrous
flash flood event. This peak discharge can only be
explained through the complex response of the catchment
to the occurrence of fires and landslides (Fig. 7). This
study demonstrates the need to consider flash floods as a
combination of multiple hazards and not as
self-determined phenomena for disaster risk reduction.

The methodologies used in this study do not require
detailed field work nor intensive system monitoring and
can as such be applied to other similar multi-hazard
environments with low data availability. This approach is
needed to quickly develop and reinforce correct legisla-
tions and to take appropriate actions when a fire, a storm,
or an earthquake occurs, taking into account all possible
current and future multi-hazard interactions.
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