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Abstract. Deforestation is associated with a decrease in slope stability through the alteration of hydrological
and geotechnical conditions. As such, deforestation increases landslide activity over short, decadal timescales.
However, over longer timescales (0.1–10 Myr) the location and timing of landsliding is controlled by the in-
teraction between uplift and fluvial incision. Yet, the interaction between (human-induced) deforestation and
landscape evolution has hitherto not been explicitly considered. We address this issue in the North Tanganyika–
Kivu rift region (East African Rift). In recent decades, the regional population has grown exponentially, and the
associated expansion of cultivated and urban land has resulted in widespread deforestation. In the past 11 Myr,
active continental rifting and tectonic processes have forged two parallel mountainous rift shoulders that are
continuously rejuvenated (i.e., actively incised) through knickpoint retreat, enforcing topographic steepening.
In order to link deforestation and rejuvenation to landslide erosion, we compiled an inventory of nearly 8000
recent shallow landslides in © Google Earth imagery from 2000–2019. To accurately calculate landslide ero-
sion rates, we developed a new methodology to remediate inventory biases linked to the spatial and temporal
inconsistency of this satellite imagery. Moreover, to account for the impact of rock strength on both landslide
occurrence and knickpoint retreat, we limit our analysis to rock types with threshold angles of 24–28◦. Rejuve-
nated landscapes were defined as the areas draining towards Lake Kivu or Lake Tanganyika and downstream of
retreating knickpoints. We find that shallow landslide erosion rates in these rejuvenated landscapes are roughly
40 % higher than in the surrounding relict landscapes. In contrast, we find that slope exerts a stronger control on
landslide erosion in relict landscapes. These two results are reconciled by the observation that landslide erosion
generally increases with slope gradient and that the relief is on average steeper in rejuvenated landscapes. The
weaker effect of slope steepness on landslide erosion rates in the rejuvenated landscapes could be the result of
three factors: the absence of earthquake-induced landslide events in our landslide inventory, a thinner regolith
mantle, and a drier climate. More frequent extreme rainfall events in the relict landscapes, and the presence of a
thicker regolith, may explain a stronger landslide response to deforestation compared to rejuvenated landscapes.
Overall, deforestation initiates a landslide peak that lasts approximately 15 years and increases landslide erosion
by a factor 2 to 8. Eventually, landslide erosion in deforested land falls back to a level similar to that observed
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under forest conditions, most likely due to the depletion of the most unstable regolith. Landslides are not only
more abundant in rejuvenated landscapes but are also smaller in size, which may again be a consequence of a
thinner regolith mantle and/or seismic activity that fractures the bedrock and reduces the minimal critical area for
slope failure. With this paper, we highlight the importance of considering the geomorphological context when
studying the impact of recent land use changes on landslide activity.

1 Introduction

On steep terrain, the erosion caused by shallow landslides
(with a maximal depth of a couple of meters) increases sig-
nificantly as a result of deforestation (e.g. Montgomery et al.,
2000; Mugagga et al., 2012). The removal of trees, due to
either human or natural causes, decreases the slope stabil-
ity through the alteration of hydrological and geotechnical
conditions, such as the loss in soil cohesion due to tree root
decay (Sidle et al., 2006; Sidle and Bogaard, 2016). After
10–20 years, depending on the climate and vegetation regen-
eration rate, this effect starts wearing off (Sidle and Bogaard,
2016). However, when forests are permanently converted to
grassland or cropland, the consequences of deforestation for
landsliding can last much longer or even be permanent (Sidle
et al., 2006).

While these general principles are well described, we do
not yet fully understand the extent to which the response to
deforestation is modulated by tectonic forcing, which typ-
ically occurs over timescales of 0.1–10 Myr (e.g. Whipple
and Meade, 2006). A key distinction can be made here be-
tween actively incising, rejuvenating landscapes, in which
landslides are a prime slope-limiting mechanism and “old”,
so-called relict landscapes, where hillslopes have had a long
time to adapt to river incision (Burbank et al., 1996; Larsen
and Montgomery, 2012). These two landscape types can be
expected to respond differently to deforestation: in rejuvenat-
ing landscapes, hillslopes are already continuously adapting
to river incision through landsliding (Egholm et al., 2013).
In relict landscapes, on the other hand, hillslopes will slowly
become less steep and landslides will occur more sporadi-
cally, potentially allowing for a thick regolith mantle to de-
velop (Schoenbohm et al., 2004; Bennett et al., 2016). Cli-
matic variations can also drive differences in landscape re-
sponse to deforestation (Crozier, 2010), and in the context of
lithologically diverse landscapes, the effect of rock strength
on both knickpoint retreat and landsliding must also be ac-
knowledged (Parker et al., 2016; Baynes et al., 2018; Camp-
forts et al., 2020).

Here, we aim to explore the interplay of deforestation and
uplift-driven landscape rejuvenation on shallow landslide
erosion. We focus our research on the North Tanganyika–
Kivu rift region (hereafter referred to as “the NTK rift”,
Fig. 1), part of the western branch of the East African Rift.
The area is characterized by frequent landsliding, mostly
triggered by rainfall, widespread deforestation and active

continental rifting (Hansen et al., 2013; Saria et al., 2014;
Monsieurs et al., 2018a; Depicker et al., 2020; Dewitte et al.,
2021). The study area is therefore an ideal setting to eval-
uate how deforestation affects landslide erosion in different
landscape settings.

2 The North Tanganyika–Kivu rift region

Active continental rifting in our study area is driven by the
divergence of the Victoria and Nubia plates that started at ca.
11 Ma and currently continues at a rate of ca. 2 mm/yr (Saria
et al., 2014; Pouclet et al., 2016). Due to this setting, there
is widespread seismic activity, active volcanism, and uplift,
initiating landscape rejuvenation through knickpoint retreat
(Smets et al., 2015; Delvaux et al., 2017; Dewitte et al.,
2021). Adding to the geological complexity of the NTK rift
is the wide variability in age and strength of rock formations.
The majority of rocks in the northern and eastern parts of
the study area are of Mesoproterozoic age (1600–720 Ma),
being mostly quartzites, granites, or pelites. The southwest
is largely covered by either weathering-resistant quartzites
or weathering-prone gneiss and micaschists of Paleoprotero-
zoic age (2500–1600 Ma). Within the rift shoulders, the same
pattern of Meso- and Paleoproterozoic rocks is observed,
save for the occurrence of much younger lithologies such
as the river and lake sediments in the Ruzizi floodplain and
the volcanic deposits (12 Ma–present) found around Bukavu
and north of Goma (Delvaux et al., 2017; Laghmouch et al.,
2018).

In the natural context, prior to widespread human activity,
forests covered most of the DRC and the mountainous rift
shoulders in Rwanda and Burundi, while the vegetation tran-
sitioned to woodland savanna towards the east of our study
area (Ellis et al., 2010; Aleman et al., 2018; Roche and Nza-
bandora, 2020). Only since the beginning of the 20th century
has large-scale deforestation taken place, especially along the
rift shoulders and in Rwanda and Burundi (Ellis et al., 2010;
Aleman et al., 2018). In 2000, the study area (ca. 88 500 km2)
had an estimated forest coverage of 73.1 %. Between 2001
and 2018, 4.5 % of this forest was cleared, mainly for the
purpose of agriculture (Hansen et al., 2013; Tyukavina et al.,
2018; Musumba Teso et al., 2019). Deforestation is there-
fore an indirect result of the fast-growing population, which
increased from 89 inhabitants per km2 in 1975 to 241 inhabi-
tants per km2 in 2015 (Hansen et al., 2013; JRC and CIESIN,
2015).
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Figure 1. Overview of the North Tanganyika–Kivu (NTK) rift. (a) Extent of the studied area and active faults (Delvaux and Barth, 2010).
LANDSAT-8 imagery is used as background (USGS, 2018). (b) The transects of the elevation at different latitudes illustrate the elevated rift
shoulders, being the result of tectonic uplift. The four most populous cities in the area of the NTK rift (Goma, Bukavu, Uvira, Bujumbura)
are located in between the rift shoulders. The transect was derived from the 30 m resolution digital elevation model (DEM) provided by the
Shuttle Radar Topography Mission (SRTM) (USGS, 2006).

3 Methods

In the sections below, we first focus on the landscape charac-
teristics of the NTK rift that can exert a control on landslide
erosion: forests, rejuvenation, rainfall, and rock strength.
Next, we elaborate on the different aspects of the landslide
erosion assessment: the compilation of an inventory and the
calculation of shallow landslide erosion rates (in the context
of the previously determined landscape characteristics).

3.1 Regional controls on landslide erosion

3.1.1 Forest cover and deforestation

We characterize the NTK rift in terms of forest dynamics by
means of the global forest data presented by Hansen et al.
(2013) (Fig. 2a; the data were updated in 2018). This dataset
contains a tree cover map for the year 2000 and forest loss
data for the period 2001–2017, both provided at a resolution
of 1 arcsec (ca. 30 m). The tree cover data show the percent-
age of tree coverage per pixel in 2000, and the forest loss
data display discrete values between 1 and 17, indicating
the year in which deforestation took place. Based on these

data, we distinguish three land cover classes: (i) forest, hav-
ing > 25 % tree cover (as suggested by Hansen et al., 2013);
(ii) deforested land; and (iii) non-forest land, with ≤ 25 %
tree cover. Both deforested and non-forest land encompass
land use classes such as bare land, cropland, grassland, and
urban land. Historically, current non-forest land used to be
either savanna grassland or forest (Roche and Nzabandora,
2020). The difference between non-forest land that used to
be forested in the past and deforested land is the elapsed time
since deforestation. Thus, the non-forest land either under-
went deforestation before the year 2000 or was never forest
in the first place. Deforested land experienced deforestation
over the last 2 decades.

3.1.2 Landscape rejuvenation

To distinguish the rejuvenated landscapes within the rift
shoulders from the surrounding landscapes (hereafter re-
ferred to as the relict landscapes), we use the spatial pattern
of knickpoints retreating upstream towards the rift shoulders,
away from the active faults. Stationary knickpoints, here de-
fined as knickpoints at a distance shorter than 1 km from a ge-
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Figure 2. Environmental characterization of the NTK rift: (a) tree cover for the year 2000 and deforestation from 2001–2017 (Hansen et al.,
2013), (b) elevation and some renowned mountain peaks (height expressed in meters) (USGS, 2006), (c) average annual rainfall between
2005–2015 (Van de Walle et al., 2020); (d) lithostratigraphy (Table 1) (Laghmouch et al., 2018).

ological contact, are considered unrelated to the rejuvenation
process and removed from the analysis (Kirby and Whipple,
2012; Bennett et al., 2016). Two criteria are applied to iden-
tify the rejuvenated rift: (i) the area must drain towards Lake
Kivu or Lake Tanganyika, and (ii) the area must be located
downstream of any non-stationary knickpoint unless there is
no knickpoint observed in the area. In the latter case, we as-
sume the knickpoint reached the rift shoulder and the land-
scape is completely rejuvenated.

We use the KNICKPOINTFINDER function in TopoToolbox
to identify knickpoints. This function requires a drainage net-
work and tolerance value, reflecting the maximum expected
error in the true river profiles (Schwanghart and Scherler,
2017). The drainage network for this purpose is modeled
with the 1 arcsec SRTM DEM data (USGS, 2006) and a
threshold catchment area of 2× 106 m2. The tolerance value
is used to distinguish knickpoints from discrepancies in the
longitudinal river profile that are caused by errors in the
DEM data. The tolerance value is calculated as the maxi-
mal difference between the 90th and 10th quantile of the
smoothed river profiles (Schwanghart and Scherler, 2017)
and subsequently lowered until the algorithm identifies the
three knickpoints we validated in the field (Fig. 3).

3.1.3 Rainfall

Active rifting not only triggers landscape rejuvenation but
also impacts local rainfall patterns (Van de Walle et al.,
2020). Depicker et al. (2020) showed a significant link be-
tween landslide occurrence and the frequency of extreme

rainfall events in the NTK rift. Moreover, field observations
and local reports confirm that the majority of recent shallow
landslides are rainfall-triggered (Monsieurs et al., 2018a; De-
picker et al., 2020; Dewitte et al., 2021). To explore any re-
lationship between rejuvenation and rainfall, we analyze two
metrics: the average annual rainfall and the number of times
when accumulated rainfall was sufficiently large to trigger
landsliding. As a proxy of the latter criterion, we use a 2 d,
15 mm threshold as it is a conservative estimation for global
thresholds set by Guzzetti et al. (2008). Our intent is not
to approximate an actual in situ threshold but rather to re-
flect spatial patterns in intense rainfall capable of triggering
landslide events. For the comparison of rainfall patterns be-
tween rejuvenated and relict landscapes, we apply the non-
parametric Mann–WhitneyU test, whereby each observation
is the average metric (rainfall or threshold exceedance) in
fifth-order catchments. These units are derived from the 30 m
DEM using a river catchment threshold of 105 m2.

The rainfall pattern is derived from a regional climate sim-
ulation with COSMO-CLM, a physical model, for the period
2005–2015 and using the ERA5 reanalysis product for the
initial and boundary conditions of the atmosphere (Van de
Walle et al., 2020; Hersbach et al., 2020). Due to in situ data
scarcity, evaluation of the simulated precipitation amounts
is restricted to a comparison with a set of satellite products.
Generally, the satellite data suggest lower amounts of rainfall
compared to the simulated model output (Van de Walle et al.,
2020), yet this was expected as satellite products tend to un-
derestimate actual precipitation (Dinku et al., 2011; Mon-
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Figure 3. Field-validated knickpoints in Rwanda. The red ar-
row indicates the location of the knickpoint: (a) east of Mabanze,
Rwanda (2.047852◦ S, 29.469678◦ E); (b) east of Kanama, Rwanda
(1.705683◦ S, 29.391763◦ E); (c) southwest of Kibilira, Rwanda
(1.980443◦ S, 29.61586◦ E). Image © 2019 Google Earth.

sieurs et al., 2018b). The final model output has a spatial res-
olution of 2.8 km and a temporal resolution of 1 h (Fig. 2c).
Note that the spatial resolution of the rainfall products might
be too low to fully capture the impact of orographic controls
and the local convective storm patterns (Monsieurs et al.,
2018b).

3.1.4 Rock strength and threshold slopes

In order to account for the control of lithology on the hill-
slope response to uplift and incision (Schmidt and Mont-
gomery, 1995; Korup, 2008; Korup and Weidinger, 2011;
Bennett et al., 2016), we classify the 12 lithostratigraphical
units present in the NTK rift (Fig. 2d and Table 1) into major
categories based upon the analysis of their threshold slope, a
proxy for rock strength (Korup and Weidinger, 2011). Rock
strength is a factor that must be taken into account when in-
vestigating landslide characteristics; equal slopes with dif-
ferent rock strength properties are expected to display dif-
ferent behavior in terms of landsliding and knickpoint re-
treat (Parker et al., 2016; Baynes et al., 2018; Campforts

et al., 2020). We determine the rock strength by analyz-
ing the dependency of the mean hillslope gradient, S, on
the normalized steepness index, ksn, averaged on a catch-
ment scale (Safran et al., 2005; DiBiase et al., 2010; Bennett
et al., 2016). We analyze first-order catchments, whereby a
drainage network was derived from the 1 arcsec SRTM DEM
data and a threshold catchment area was set at 105 m2, i.e.,
large enough so that the smallest rivers visible in © Google
Earth were detected. For each lithostratigraphical unit, we
only consider watersheds where more than 50 % of the area
is covered with the dedicated lithostratigraphy.

The ksn values of a river segment is a proxy for the river
incision rate and is calculated using the following equation
(Wobus et al., 2006):

ksn = SchanA
θref , (1)

where Schan is the local channel slope, A is the upstream
catchment area, and θref is the reference concavity index,
for which we assume a value of 0.45 (see, e.g., DiBiase and
Whipple, 2011).

Theory suggests a positive linear relationship between S
and ksn in catchments with relatively low river incision rates.
For catchments with high river incision rates, an increase in
ksn will not lead to further hillslope steepening but to slope
failure (DiBiase et al., 2010; Korup and Weidinger, 2011;
Larsen and Montgomery, 2012), and thus the S becomes in-
dependent of the ksn. To capture this nonlinear dependency
of average basin slope on channel steepness, we introduce a
new empirical relationship to describe the response of S to
ksn:

S = TA
(

1− exp
(
−

a

TA
ksn
))
, (2)

where parameter a is the slope of the curve at ksn = 0. Thus,
for low incision rates, a approximates the slope of the linear
relationship between S and ksn. Parameter TA is the slope an-
gle to which the terrain converges for high ksn values. Hence,
TA can be considered equivalent to the threshold slope. How-
ever, when there is a linear relationship for S = f (ksn) in the
entire ksn range (when the R2 > 0 for a linear fit), we do not
consider the threshold estimate reliable.

3.2 Quantifying shallow landslide erosion

3.2.1 Inventory

The assessment of shallow landslide erosion is based on a
© Google Earth landslide inventory, which is an update from
the dataset presented by Depicker et al. (2020). Only recent
landslides, for which we can estimate the time of occurrence,
are considered in our inventory. In other words, the moment
of failure must be situated between the timing of two images.
Moreover, since deforestation mainly affects the stability of
the first few meters of the regolith (Sidle and Bogaard, 2016),
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Table 1. Lithostratigraphical units in the NTK rift as presented by Depicker et al. (2020) and based on the work of Laghmouch et al. (2018).

Age Chronostratigraphy Lithostratigraphy Main lithological constitution

10 Ka–present Late Quaternary Recent volcanics Lava, tuff, and ash, deposited in the past decades and centuries, a
result of eruptions of the Nyiragongo and Nyamulagira.

2–1 Ma Early Quaternary Young volcanics Relatively fresh basalts, deposited at ± 2 Ma.

12–6 Ma Neogene Old volcanics Highly weathered basalt, deposited at 11–4 Ma.

23 Ma–present Late Cenozoic Rift sediments Sand along the lake or swamps more inland.

360–201 Ma Karoo Black shales, tillite, not metamorphosed.

1000–540 Ma
Neoproterozoic

Itombwe Black shales, tillite, silicified tillite, weakly methamorphosed.

Malagarasi Black shales, tillite, silicified tillite, weakly methamorphosed. Pres-
ence of dolomites and volcanic rocks (basalts).

820–720 Ma
Mesoproterozoic

Alcaline complexes Granitic rocks, intrusive volcanic rocks (rhyolite).

1375–980 Ma Granites Two-mica and leucogranites.

1600–1000 Ma Kivu Pelites, quartzopelites, and quartzites at different degrees of weath-
ering. Moderately metamorphosed.

2500–1600 Ma Paleoproterozoic Ruzizi and ante-Ruzizi Gneiss and micaschists, prone to chemical weathering, and
quartzites, resistant to weathering. Strongly methamorphosed.

4000–2500 Ma Archaen Gneiss and micaschists, prone to chemical weathering, and
quartzites, resistant to weathering.

Figure 4. Examples of deforestation followed by landsliding. The left column shows the area prior to deforestation. The middle column
shows the area after deforestation but prior to landsliding. The right column shows the area after landsliding. (a) Landslide event north of
Butezi, DRC (2.843201◦ S, 28.296984◦ E; image © 2019 Google Earth). (b) Landslide event in Matale, DRC (2.645874◦ S, 28.360656◦ E;
image © 2019 Google Earth).
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we only consider shallow landsliding in this study. Deep-
seated and bedrock landslides are excluded from the inven-
tory. We apply a maximum depth of a couple of meters for
landslides to be inventoried. We estimate the relative depth of
the landslides (shallow or deep-seated) through in situ field
observations and/or by visually analyzing the shape and size
of the landslide scarp and deposits in © Google Earth im-
agery (Depicker et al., 2020). All images used in the analysis
are of very high spatial resolution, ranging from 30 to 60 cm.
The images in © Google Earth are provided by either © Dig-
italGlobe or © CNES/© Airbus, and they were captured be-
tween 2000 and 2019. Each landslide is manually assigned a
polygon delineating the source area so that the total source
area LSS can be calculated (m2 km−2 yr−1; Sect. 3.2.2). The
LSS is the area over which regolith material has been re-
moved by landsliding on an annual basis and serves as a
proxy for shallow landslide erosion. We also manually assign
a point of initiation used to calculate the landslide frequency
LSF (no. of LS km−2 yr−1; Sect. 3.2.2) to each landslide. In
order to calculate the LSF as accurately as possible and avoid
amalgamation, we differentiate between separate source ar-
eas (Li et al., 2014; Marc et al., 2015; Roback et al., 2018).
We also pay attention to inventory landslides not linked to
mining and quarrying. Such sites were identified either dur-
ing fieldwork or in © Google Earth imagery through charac-
teristics such as a gradual growth of the affected area over a
time span of several years and the presence of mining infras-
tructure (road tracks, trucks, buildings, spoil tips) within the
affected area.

The one-sided Mann–Whitney U test is applied to statis-
tically quantify any differences between different landslide
populations (McDonald, 2014). Furthermore, we illustrate
the potential differences between the landslide areas of re-
juvenated and relict landscapes by comparing the frequency
density of the landslide areas. The frequency density curves
are fitted to the inverse 0 distribution (Malamud et al., 2004).

3.2.2 Calculating landslide erosion rates from a biased
© Google Earth inventory

Generally, the LSF is calculated as follows:

LSF =
n

r A
, (3)

with n the total number of shallow landslides,A the total area
(km2), and r the imagery range (years) in © Google Earth,
i.e., the age difference between the oldest and youngest im-
age. The imagery range is thus equal to the period of observa-
tion. However, the imagery range is highly variable through-
out the study area due to differences in the availability of
© Google Earth imagery (Fig. 5a). Since Eq. (3) is valid
when r is constant within our study area, we divide our study
area in subareas j that each have a constant imagery range

rj . The LSF in each subarea LSjF is then

LSjF =
nj

rj Aj
, (4)

with nj the number of landslides in subarea j , Aj the sur-
face area of j , and rj the constant imagery range in j . To
calculate the frequency for the entire study area, the frequen-
cies LSjF are averaged out using weights proportional to their
corresponding area Aj :

LSF =

N∑
j=1

Aj

A
LSjF, (5)

withN the number of subareas j . Substituting Eqs. (4) and
(5) becomes

LSF =
1
A

N∑
j=1

nj

rj
. (6)

Hence, we do not require the size Aj of each subarea j for
the calculation of the total LSF. Instead of aggregating the
LSF over all subareas, we can aggregate the LSF over the
individual landslides. Eq. (6) then becomes

LSF =
1
A

n∑
i=1

1
r i
, (7)

with r i the time range observed in landslide i. The landslide
inventory is expected to be biased due to spatial differences
in the imagery density d (Fig. 5b), defined as the total number
of available images at each location, as vegetation regrowth
might erase the spectral signature of landslides before they
are captured in imagery. Hence, we expect to detect more
landslides in areas with higher imagery density. To compen-
sate for this bias, we assume that the probability of identi-
fying a landslide in a certain region increases linearly with
imagery density in that specific region. Equation (7) then be-
comes

LSF =
1
A

n∑
i=1

1
r i d i

, (8)

with d i the imagery density observed at the location of land-
slide i. Note that there can be a saturation of the information
provided by the imagery: when the imagery density is high,
the availability of one extra image will have no to little ef-
fect on the observed number of landslides. We validate our
assumptions of linearity and saturation by visually assessing
the dependency of landslide density (number of landslides
per square kilometer) on imagery density. If the assumption
of linearity does not hold, we have to apply a non-linear
transformation on the d i values. If saturation is problematic
to our inventory, we have to set a maximum value for d i .
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Figure 5. Visualization of the imagery bias in © Google Earth prior
to 4 May 2019: (a) imagery range and (b) imagery density. The
range and density were calculated by manually identifying 932 im-
agery footprints. The highest imagery density is available for the
major cities in the study area (Goma, Bukavu, and Bujumbura),
whereas the northwest and southwest regions have fewer observa-
tions. For some areas (in black) there is no available image.

Deriving the LSS equations is analogous to deriving the
ones for the LSF. We only have to slightly modify Eq. (7)
and Eq. (8):

LSS =
1
A

n∑
i=1

aisrc
r i
, (9)

LSS =
1
A

n∑
i=1

aisrc
r i d i

, (10)

whereby aisrc is the source area of landslide i. Note that the
calculation of LSS will be less accurate than for the LSF
due to biases in the delineation of the landslide source area.
These biases are caused by the time lag between the land-
slide occurrence and the landslide detection in © Google
Earth, whereby part of the source area might already have
recovered. To avoid biases linked to the interpretation of
the source area, all landslides were delineated by the same
person. In order to statistically verify a difference in land-
slide activity between regions (for example rejuvenated ver-
sus relict landscapes), we use the one-sided non-parametric
Mann–Whitney U test to compare the different landslide ac-
tivity measures in fifth-order water catchments (calculated
with Eqs. 8 and 10 to compensate for imagery density differ-
ences).

3.2.3 Impact of slope on landslide erosion

In order to assess the impact of slope steepness on the LSS
(a proxy for landslide erosion), we first reclassify the slope
values between 0–50◦ into 10 classes of equal width and sub-
sequently apply Eq. (10) to each slope class and the land-
slides therein. Similarly, to assess the impact of slope steep-
ness on LSF, we apply Eq. (8) to each slope class and its land-
slides. Furthermore, we estimate the degree to which our LSS
and LSF calculations are affected by outliers and/or extreme
landslide events. First, we divide the study area in 50 east–
west bands of equal width. Second, we calculate the LSS and
LSF for each slope class 50 times, each time leaving out the
slope and landslide data for a single east–west band. In other
words, for each run we slightly perturbate the landslide in-
ventory.

3.2.4 Linking forest cover and deforestation to landslide
erosion

In order to link forest dynamics to landslide erosion, we must
distinguish between landslides that followed deforestation
(Fig. 4) and landslides that caused deforestation. To iden-
tify the correct causality, we reconstructed the timeline of
every landslide that occurred on deforested land (Fig. 6b).
Landslides following deforestation are defined as those that
happened within the post-deforestation time range, being the
period between the first image after the year of deforestation
and the most recent image.

Determining the LSS as a function of the time elapsed
since deforestation (tdef) is necessary to characterize the post-
deforestation landslide wave. Because tdef is temporally dy-
namic, this analysis requires two components: (i) the total
area Atdef in which we can observe land that was deforested
tdef years ago and (ii) the total affected area of landslides that
happened tdef years after deforestation. The first component,
Atdef , entails all areas where the sum of tdef and the year of de-
forestation lies in the time range between the age of the oldest
and newest post-deforestation image in © Google Earth. For
the second component, we only include landslides for which
the time between deforestation and landsliding (tdef→LS) is
equal to tdef.

There is a considerable degree of uncertainty associated to
tdef→LS since we do not know the exact timing of the land-
slides (the occurrence is situated between the capture times
of the image where it was initially observed and the preced-
ing image). Similarly, we know the year of deforestation but
not the exact date. To assess the uncertainty on the timing
of deforestation and landslide occurrence, we calculate the
LSS 100 times, each time sampling a new tdef→LS for each
landslide. For each sample of tdef→LS, we make two assump-
tions: (i) the exact moment of deforestation (the lower limit
of tdef→LS) is assumed to be distributed uniformly in the re-
ported deforestation year. (ii) The timing of landslide occur-
rence (the upper limit of tdef→LS) is assumed to be distributed
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Figure 6. Schematic overview of the three considered forest cover
scenarios in © Google Earth. The satellite icons signal the avail-
ability of a © Google Earth image, and the colored circles indicate
whether we can potentially observe recent landslides in the con-
cerned image. Panel (a) shows the forest scenario, wherein each
landslide observed in these areas is linked to forest cover. Panel (b)
shows the deforestation scenario, wherein only landslides observed
starting from the second © Google Earth image after the year of
deforestation are considered to be linked to deforestation (in other
words, we can only observe deforestation-induced landslides in im-
agery that is encircled in red on the figure). Hence, in this illustrated
example, we cannot attribute landslides from the 2008 imagery to
deforestation, as we cannot be sure that these landslides happened
before or after the 2007 deforestation. Note that we do not know the
exact moment of deforestation, only the year (indicated with the red
bar) is reported. Panel (c) shows the non-forest scenario, wherein
every landslide observed in these regions is linked to non-forest ar-
eas.

uniformly between the capture times of the image where it
was initially observed and the preceding image.

4 Results

4.1 Regional controls on landslide erosion

We identified 673 non-stationary knickpoints using a toler-
ance value of 100 m. These knickpoints were used to demar-
cate the rejuvenated landscapes inside the rift (Fig. 7a). The
rejuvenated landscapes encompass 15 526 km2, i.e., 18 % of
the entire study area.

The average annual rainfall in the rejuvenated land-
scapes is significantly lower than in the relict landscapes
(1905 mm/year versus 2297 mm/year, p < 0.01). Similarly,
we find that within the rejuvenated landscapes, the 2 d,
15 mm threshold is exceeded less often compared to the relict
landscapes (17 % difference, p < 0.01), indicating that in-

tense (potentially landslide-triggering) rainfall events occur
less frequently.

Based on the analysis of 234 840 first-order catchments,
we identify three major lithological categories (Fig. 8). Cat-
egory I comprises units that do not display clear threshold
angles. These are lithostratigraphies of relatively young age
such as recent and young volcanic basalts and lake and river
sediments (all< 23 Myr), except for the Malagarasi rock for-
mations. The latter formations are of old age (1000–540 Ma)
and cover only a small area in the southeast of the study area.
The lack of threshold landscapes in Category I could be re-
lated to the relatively short duration of exposure to weath-
ering for these rocks. Category II, consisting of old vol-
canic basalts and Karoo lithostratigraphy (both younger than
210 Myr), has threshold slopes of roughly 17◦. Rocks of Cat-
egory III, with observed threshold slopes ranging between
24–28◦, are generally of older age (> 540 Myr) and display a
high resistance to slope failure. The lithostratigraphy of Cat-
egory III includes the following formations: Itombwe, Alca-
line complexes, Granites, Kivu, Ruzizi, and Archaen.

4.2 Shallow landslide erosion in the NTK rift: impacts of
deforestation and rejuvenation

We inventoried 7944 recent shallow landslides (Fig. 7a). Fol-
lowing the classification of Hungr et al. (2014), the observed
landslides were mostly debris slides, caused by the sliding
of regolith on a planar surface parallel to the ground. These
debris slides, once initiated, often transform into avalanches,
characterized by the flow of (at least partially) saturated de-
bris on a steep slope. Another commonly observed landslide
type was the debris or mud flow, defined as the rapid flow
of saturated debris in a steep channel. In total, we found 873
landslides in deforested land, yet we could only be certain
for 378 of those landslides that they were preceded by de-
forestation (Sect. 3.2.4). Furthermore, 3155 landslides were
associated with forest, and 4411 landslides were associated
with non-forest. Rocks of Category I and II combined con-
tained only 344 instances, hampering a robust analysis. We
therefore focus our further analysis on the 7600 landslides in
areas with rocks of Category III.

The number of observed landslides in © Google Earth
appears to increase linearly with the available imagery up
to a density of 12 images (Fig. 9a). The proportion of the
study area with a higher density than 12 images is negli-
gible (1.5 %) and contains merely 1 % of all landslides in
the inventory. Hence, the assumption that landslide density
is linearly dependent on imagery density is valid within our
study area, and we take no measures to correct for saturation
(Sect. 3.2.2). The annual extent of imagery made available
in © Google Earth increases with time, especially after 2010
(Fig. 9b).

After accounting for differences in imagery density, the
overall LSS in rejuvenated landscapes, which is a proxy for
shallow landslide erosion, is roughly 40 % higher than in
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Figure 7. Landslide and knickpoint inventory for the NTK rift. (a) We identified 7994 shallow recent landslides that occurred either in forest,
non-forest, or after deforestation and 673 non-stationary knickpoints. These knickpoints were used to separate the rejuvenated landscapes
between the rift shoulders from the surrounding relict landscapes (black and white line). (b) Example of shallow landslides in Rwanda
(−1.7151◦ S, 29.7909◦ E) and the delineation of their total area (red) and source area (green). (c) Example of the rift shoulder west of Lake
Tanganyika. The method for delineating the rejuvenated landscapes is specified in Sect. 3.1.2.

relict landscapes (p = 0.034, Fig. 10a). The difference be-
comes even larger when looking at the LSF (160 %, p =
0.014, Fig. 10b), which implies that landslides are on av-
erage smaller in rejuvenated landscapes. This difference in
landslide size between rejuvenated and relict landscapes is
confirmed in all three land cover types: forests (114 versus
308 m2, p < 0.01, Fig. 11a), non-forests (111 versus 138 m2,
p < 0.01, Fig. 11b), and deforested land (94 versus 239 m2,
p < 0.01). Similar to the rejuvenation status, forest cover
also influences the landslide size. The average source area
for forests (223 m2) decreases non-significantly after defor-
estation (165 m2, p = 0.06). In non-forest lands, the land-
slide size (126 m2) is significantly smaller than in recently
deforested lands (p < 0.01).

The LSS and LSF increase with slope gradient (Fig. 12a, b,
d, e). A decrease is observed for forested slopes> 45◦, which
could be linked to limitations on regolith formation, whereby

weathering and sediment deposition are outpaced by erosion
(Montgomery, 2001; Dykes, 2002; Prancevic et al., 2020).
When comparing slopes of equal steepness, we observe that
the LSS is generally higher in relict landscapes than in reju-
venated landscapes (Fig. 12c). Nevertheless, the overall LSS
is higher in rejuvenated landscapes because the overall pre-
dominance of steeper relief (Fig. 12g, h) compensates for
the fact that comparing similarly angled individual slopes in
rejuvenated and relict zones, rejuvenated slopes are shown
to have a lower or equal rate of shallow landslide erosion
(Fig. 12c).

Recently deforested slopes are up to 8 times more sensitive
to shallow landsliding compared to forested slopes (Fig. 12a,
b). The deforestation effect lasts approximately 15 years
(Fig. 13). However, deforestation increases LSS much more
in relict landscapes compared to rejuvenated areas (Fig. 12c).
The LSS in the non-forested areas (blue lines in Fig. 12) cor-
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Figure 8. Threshold slope analysis for the different lithostratigraphical units in the NTK rift. Each point represents a first-order river catch-
ment over which we averaged the slope gradient S and normalized river steepness index ksn. The black curves represent the S = f (ksn)
relationship fitted to Eq. 2. (a)–(d) Category I: young lithostratigraphy for which no clear threshold angle is observed. (e)–(f) Category II:
young lithostratigraphy with a low threshold angle of ca. 17◦. (g)–(l) Category III: older rocks with higher observed threshold slopes of
24–28◦.

responds to the situation that prevails once the deforestation-
induced landslide wave has passed. In this situation, the LSS
drops back to a level similar to that observed under forest
(green line) (Fig. 12a, b).

5 Discussion

5.1 Interactions between deforestation, rejuvenation,
and landslide erosion

While the landslide erosion rate (approximated by the LSS)
is higher in rejuvenated landscapes due to a steeper relief, the
relative effect of slope steepness on landslide erosion appears
to be weaker in rejuvenated landscapes: we found that steep
(> 35◦) forested slopes display higher shallow landslide ero-
sion rates in relict landscapes than in rejuvenated landscapes
(Fig. 12c). We evaluate three mechanisms that could explain
this difference: seismic activity, regolith availability, and cli-
mate.

Seismic activity is a first factor that could explain why
slope has a different impact on landslide erosion in reju-
venated and relict landscapes. Generally, there is more and
stronger seismic activity within the rejuvenated landscapes
(Delvaux et al., 2017). We hypothesize that the higher seis-
mic activity would result in elevated landslide erosion rates

on longer timescales due to the occurrence of major landslide
events triggered by large earthquakes (Delvaux and Barth,
2010; Marc et al., 2015). However, in our observed period,
chances of earthquake-triggered landsliding were very lim-
ited (Dewitte et al., 2021). The lack of such observations sug-
gests that our window of observation was too short to capture
earthquakes that were large enough to trigger landsliding.
Over the long term, the contribution of earthquake-induced
landsliding to regolith mobilization in the rejuvenated land-
scapes may nevertheless be important. Earthquakes fracture
and weaken the hillslope material and hence reduce the min-
imum critical area for landslide initiation (Delvaux et al.,
2017; Milledge et al., 2014; Vanmaercke et al., 2017). As
such, seismic activity may also contribute to a smaller av-
erage landslide size in rejuvenated landscapes. Moreover, a
previous study in the NTK rift established an indirect link
between spatial patterns of seismic activity (approximated
by a modeled peak ground accelaration (PGA) product by
Delvaux et al., 2017) and the spatial pattern of the landslide
occurrence, though this study did not differentiate between
deep-seated and shallow landsliding (Depicker et al., 2020).

A second factor potentially contributing to the differ-
ence in slope impact on erosion rates in rejuvenated and
relict landscapes (Fig. 12c) is that the regolith mantle on
rejuvenated slopes is expected to be thinner and less con-
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Figure 9. The impact of imagery density (the number of available
images in © Google Earth) on the number of observed landslides.
We only show the results for the rocks of Category III (Sect. 4.1).
Therefore, major cities that are characterized by a high imagery den-
sity like Bukavu, Bujumbura, and Goma are excluded from this fig-
ure. (a) Impact of the imagery density on the number of observed
landslides. The number of landslides seems to increase linearly with
imagery density up to 12 images. The cumulative landslide propor-
tion for a certain value shows the percentage of the landslide inven-
tory contained in areas with an imagery density equal or lower than
that value. (b) The evolution of imagery availability between 2000
and 2018.

tinuous due to the drier climate, the younger age of the
landscape, the continuous adaptation to river incision, and
sporadic earthquake-triggered landslide events (Schoenbohm
et al., 2004; Egholm et al., 2013; Marc et al., 2015; Braun
et al., 2016), thereby inducing a supply-limited landsliding
regime. This can also partly explain why the rejuvenated
landscapes have more (but smaller) landslides in comparison
to relict landscapes, as the size of the shallow landslides is
constrained by regolith availability (Prancevic et al., 2020).
However, we do not have direct evidence supporting this hy-
pothesis: the collection of field data on regolith thickness is
hampered by limited access to the field, especially in the east-
ern DRC. Alternatively, regolith depth could be derived from
landslide scars observed on a high-resolution DEM, but such
a product is currently not available.

A difference in the frequency of landslide-triggering rain-
fall events could be a third explanation for the lower impact
of slope steepness on landslide erosion in rejuvenated land-
scapes. Based on the global rainfall threshold proposed by
Guzzetti et al. (2008), we observe that the rainfall threshold
for landsliding is exceeded more often in relict landscapes.
However, due to these differences in rainfall, we would ex-
pect not only a stronger response of erosion rate to slope

Figure 10. Total landslide activity in the NTK rift adjusted for im-
agery density: (a) total landslide source area (LSS), a proxy for
landslide erosion, and (b) landslide frequency (LSF).

steepness in relict landscapes (Fig. 12c) but also a higher
LSF. The latter is not the case: slope steepness appears to
have a lower effect on LSF in relict landscapes than in re-
juvenated landscapes (Fig. 12f). This discrepancy between
erosion and frequency could be linked to two factors: differ-
ences in regolith thickness which allow for larger landslides
in the relict landscapes and seismic fracturing allowing for
smaller (and more) landslides in the rejuvenated landscapes.

Deforestation drastically increases the landslide frequency
and landslide erosion rate. The observed landslide erosion
and frequency increases two- to eight-fold after deforesta-
tion (Fig. 12a, b), which is the same order of magnitude as
what has been reported in literature for other regions (Jakob,
2000; Guthrie, 2002; Glade, 2003). The effect of deforesta-
tion on landslide erosion and frequency is temporary, lasting
approximately 15 years (Fig. 13; Sidle et al., 2006; Sidle and
Bogaard, 2016). After the wave has passed, landslide erosion
rates appear to decrease to a level similar to the average ero-
sion rate in the region (Fig. 13). However, a longer period of
observation would be useful to confirm if this effect persists
after 15 years.

We find that the landslide erosion response to deforestation
and as a function of slope is much more pronounced in relict
landscapes than in rejuvenated landscapes (Fig. 12c). This
observation may be linked to the drier climate and higher
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Figure 11. Frequency density as a function of the landslide source
area. (a) The area frequency density of shallow landslides in for-
est, separated for rejuvenated and relict landscapes. (b) The area
frequency density of shallow landslides in non-forest, separated for
rejuvenated and relict landscapes. There were not enough landslide
observations in deforested land to fit their area frequency density
to the inverse 0 distribution. The general frequency density dis-
tributions for inventories of different magnitudes (the black lines
on the curves) are derived from Malamud et al. (2004). Note that
the frequency is skewed towards smaller landslide sizes due to the
omission of deep-seated (and generally larger) landslides from our
inventory.

seismic activity in the rejuvenated landscape: there are fewer
landslide-triggering rainfall events and earthquakes may in-
duce a higher average landslide frequency, thereby removing
sensitive pockets of regolith on a semi-regular basis. Differ-
ences in regolith availability can be invoked to explain the

different response of these landscapes to deforestation. As-
suming that rejuvenated areas are indeed devoid of regolith
(in comparison to relict areas), one may expect that defor-
estation will lead to a less important response in rejuvenated
areas, simply because the stock of material that can be mobi-
lized through landsliding is smaller.

The landslide erosion rates in non-forest land are much
lower than in deforested areas and, in fact, are similar to or
lower than what has been observed in forests (Fig. 12a, b).
Thus, even when there is no regrowth of forest vegetation,
the landslide erosion rate returns to normal levels some time
after deforestation. A possible hypothesis that might explain
this result is that once the effect of deforestation on lands-
liding has worn out, the regolith mantle is protected as ef-
ficiently by forest cover as by grassland and crops, despite
the presence of human practices such as terracing that could
promote landsliding (Sidle and Ochiai, 2006). However, this
is extremely unlikely given the much smaller rooting depths
of both grasses and crops (Holdo et al., 2018). A more
probable explanation for the fading out of the deforestation-
induced landslide wave is therefore that the landslide fre-
quency and erosion rate return to lower levels once the most
landslide-sensitive regolith pockets have been removed. For
those slopes that are stripped of their regolith mantle after
deforestation, the rainfall threshold for slope failure is tem-
porarily increased and it may take thousands of years to rede-
velop a regolith depth that matches the pre-failure conditions
(Dykes, 2002; Hufschmidt and Crozier, 2008; Parker et al.,
2016). Additionally, depending on the properties of the land-
slide deposits (e.g., fine-grained or rock debris), slopes might
also experience depositional hardening due to an increase in
bulk density and cohesion of the slope material (Crozier and
Preston, 1999; Brooks et al., 2002), yet field data are required
to test this hypothesis.

Despite the fact that equal slopes in non-forest and for-
est land display similar landslide erosion rates, the average
source area is significantly smaller in non-forest landscapes.
The smaller size is likely due to the absence of trees and
the associated lower overall root cohesion. Regolith with
a lower root cohesion exhibits a smaller minimum critical
area needed to initiate landsliding (Milledge et al., 2014; Si-
dle and Bogaard, 2016). Hence, landslides in non-forest and
forest land have different size characteristics (Fig. 11), but
the total erosion rate as a function of slope remains similar
(Fig. 12).

5.2 A new approach for calculating landslides erosion
rates?

Using Eq. (9), which deals with the biases in the
© Google Earth imagery range, we obtain an overall LSS
of 4.86 m2 km−2 yr−1 in rejuvenated landscapes. Using the
volume–source area relationships presented by Larsen et al.
(2010) for soil landslides in Uganda, we obtain a rough esti-
mate of the landslide volumes. As such, we find that the LSS
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Figure 12. The effect of slope steepness and rejuvenation on landslide activity, corrected for imagery density. We only show results for
slope classes in which we observed more than 20 landslides. (a)→(c) Landslide source area (LSS) as a function of slope. (d)→(f) Landslide
frequency (LSF) as a function of slope. (g)→(h) Slope distribution for the terrain and landslides in the rejuvenated and relict landscapes. The
blue and green arrows indicate the median slope in non-forest and forest landscapes. The slopes in rejuvenated landscapes are clearly steeper
both in forest and non-forest land.

Figure 13. Deforestation-induced landslide wave. Total landslide
source area (LSS, m2 km−2 yr−1) as a function of time elapsed
since deforestation, based on the analysis of 374 post-deforestation
landslides in rocks of category III (Sect. 4.1). The grey area is the
90 % confidence interval, derived from 100 iterations of LSS calcu-
lations (Sect. 3.2.4). The dashed and dotted line represent the over-
all erosion rates in rejuvenated and relict landscapes, respectively.
There are not enough observations to make two separate consistent
plots for rejuvenated and relict landscapes (Fig. S1 in the Supple-
ment)

in rejuvenated landscapes corresponds to an erosion rate of
ca. 0.006 mm yr−1. This rate can be compared to the regional
uplift rates to estimate the importance of shallow landslid-
ing in the overall evolution of the NTK rift. There are no
accurate estimates of the uplift rates in the study area, but
the maximal estimation in the Rwenzori Mountains, a par-
ticularly tectonically active region located 150 km north of
our study area, is 2 mm year−1 (Kaufmann et al., 2016). If
we consider similar rates in the NTK rift, shallow landslide
erosion compensates merely 0.3 % of the uplift in the rejuve-
nated landscapes, assuming a steady state between uplift and
denudation. Based on a global relationship between mean lo-
cal relief and erosion rate, formulated by Montgomery and
Brandon (2002), we obtain a more conservative value of
0.6 mm yr−1 for the average erosion rate in landscapes with
a similar mean local relief as the rejuvenated landscapes in
the NTK rift (ca. 1300 m). In this scenario, shallow land-
slide erosion accounts for 1.0 % of the total erosion. Both the
upper and lower estimate suggest that while shallow land-
slides are highly visible in the landscapes we studied, their
geomorphic effect is somewhat limited. However, it must be
noted that the estimated erosion rate due to shallow landslid-
ing is most likely an underestimation. First, we did not ob-
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serve earthquake-induced landslide events, which are rare but
may lead to catastrophic landslide erosion (Marc et al., 2015;
Dewitte et al., 2021). Second, the landslide inventory used
to calculate the erosion rate is incomplete due to limitations
in © Google Earth coverage. Furthermore, we focused on
shallow landsliding, but other processes such as deep-seated
landsliding also contribute significantly to erosion (Depicker
et al., 2020; Dewitte et al., 2021). Nevertheless, it is to be
expected that overall erosion rates are lower than uplift rates:
this is the basic explanation as to why mountainous topogra-
phy is formed.

6 Conclusions

We studied shallow landsliding along the NTK rift in or-
der to understand how the interplay of landscape rejuvena-
tion and deforestation affects landslide erosion rates. Rejuve-
nated landscapes display a higher shallow landslide erosion
rate than relict landscapes. Contrarily, the relative effect of
slope steepness on landslide erosion rates is smaller in reju-
venated landscapes. These two seemingly contradicting re-
sults are reconciled by the observations that erosion gener-
ally increases with slope gradient and that the average slope
is much steeper in the rejuvenated landscapes. The lower
impact of slope steepness on landslide erosion in the reju-
venated landscapes could be the result of three factors: the
omission of earthquake-induced landslide events in our in-
ventory, a thinner regolith mantle, and a drier climate. The
hypothesis is consistent with our observations that deforesta-
tion initiates a much larger landslide peak in relict landscapes
and that landslides are, on average, much smaller in rejuve-
nated landscapes. Thus, the response of a landscape to defor-
estation depends not only on local topography and climate
but also on the geomorphic status of the landscape. Under-
standing this differential response is also important to assess
the risk for the local population. Our study shows that such
understanding is only possible if (i) inventory biases linked
to © Google Earth imagery are properly eliminated, (ii) land-
scape status (rejuvenated versus relict) is accounted for, and
(iii) a sufficiently long time frame is considered to capture the
transient nature of the deforestation-induced landslide wave.

Code and data availability. The data that support the findings of
this study are available from the corresponding author upon reason-
able request. All data will become available online at the end of
the PAStECA project (http://pasteca.africamuseum.be/, Smets and
Depicker, 2021) in March 2022.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esurf-9-445-2021-supplement.

Author contributions. AD was responsible for the compilation
of the inventory data, the conceptualization of the paper storyline,
the development and execution of the statistical analyses, the con-
duction of fieldwork, and the writing of the manuscript. GG was
involved in conceptualizing the paper storyline, shaping the discus-
sion, writing of the manuscript, and obtaining funding for this work.
LJ helped to fine-tune the methodology and statistical analysis, con-
ceptualize the paper storyline, and write the manuscript. BC pro-
vided the know-how required to calculate drainage networks, knick-
point locations, and watershed statistics in the TopoToolbox, as well
as contributing to the paper storyline and writing of the manuscript.
JU was a key figure for the completion of fieldwork in Rwanda that
lead to the identification of knickpoints and helped in improving our
inventory, in addition to providing feedback on the manuscript and
help us to better understand landslide processes in the study area.
OD was involved in compiling the inventory, conducting fieldwork,
conceptualizing the paper storyline, shaping the discussion, writing
the manuscript, and obtaining funding for this work.

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. This study was supported by the Bel-
gium Science Policy (BELSPO) through the PAStECA project
(BR/165/A3/PASTECA) entitled “Historical Aerial Photographs
and Archives to Assess Environmental Changes in Central Africa”
(http://pasteca.africamuseum.be/, last access: 25 May 2021). We
would like to thank Jonas Van de Walle for the provision of the
rainfall dataset used in this work.

Financial support. This research has been supported by the
Belgian Federal Science Policy Office (PAStECA (grant no.
BR/165/A3/PASTECA)).

Review statement. This paper was edited by A. Joshua West and
reviewed by Robert Hilton and one anonymous referee.

References

Aleman, J. C., Jarzyna, M. A., and Staver, A. C.: Forest extent and
deforestation in tropical Africa since 1900, Nature Ecology and
Evolution, 2, 26–33, https://doi.org/10.1038/s41559-017-0406-
1, 2018.

Baynes, E. R., Lague, D., Attal, M., Gangloff, A., Kirstein,
L. A., and Dugmore, A. J.: River self-organisation inhibits
discharge control on waterfall migration, Sci. Rep., 8, 1–8,
https://doi.org/10.1038/s41598-018-20767-6, 2018.

Bennett, G. L., Miller, S. R., Roering, J. J., and Schmidt, D. A.:
Landslides, threshold slopes, and the survival of relict terrain in
the wake of the Mendocino Triple Junction, Geology, 44, 363–
366, https://doi.org/10.1130/G37530.1, 2016.

Braun, J., Mercier, J., Guillocheau, F., and Robin, C.:
A simple model for regolith formation by chemical

https://doi.org/10.5194/esurf-9-445-2021 Earth Surf. Dynam., 9, 445–462, 2021

http://pasteca.africamuseum.be/
https://doi.org/10.5194/esurf-9-445-2021-supplement
http://pasteca.africamuseum.be/
https://doi.org/10.1038/s41559-017-0406-1
https://doi.org/10.1038/s41559-017-0406-1
https://doi.org/10.1038/s41598-018-20767-6
https://doi.org/10.1130/G37530.1


460 A. Depicker et al.: Deforestation, rejuvenation, and landslides in the Kivu rift

weathering, J. Geophys. Res.-Earth, 121, 2140–2171,
https://doi.org/10.1002/2016JF003914, 2016.

Brooks, S. M., Crozier, M. J., Preston, N. J., and Anderson, M. G.:
Regolith stripping and the control of shallow translational hill-
slope failure: Application of a two-dimensional coupled soil
hydrology-slope stability model, Hawke’s Bay, New Zealand,
Geomorphology, 45, 165–179, https://doi.org/10.1016/S0169-
555X(01)00153-2, 2002.

Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic,
N., Reid, M. R., and Duncan, C.: Bedrock incision, rock uplift
and threshold hillslopes in the northwestern Himalayas, Nature,
379, 505–510, https://doi.org/10.1038/379505a0, 1996.

Campforts, B., Vanacker, V., Herman, F., Vanmaercke, M.,
Schwanghart, W., Tenorio, G. E., Willems, P., and Govers, G.:
Parameterization of river incision models requires accounting for
environmental heterogeneity: insights from the tropical Andes,
Earth Surf. Dynam., 8, 447–470, https://doi.org/10.5194/esurf-
8-447-2020, 2020.

Crozier, M. J.: Deciphering the effect of climate change on
landslide activity: a review, Geomorphology, 124, 260–267,
https://doi.org/10.1016/j.geomorph.2009.09.010, 2010.

Crozier, M. J. and Preston, N. J.: Modelling Changes in Terrain Re-
sistance as a Component of Landform Evolution in Unstable Hill
Country, in: Process Modelling and Landform Evolution. Lec-
ture Notes in Earth Sciences, vol. 78, edited by: Hergarten, S.
and Neugebauer, H. J., 267–284, Springer-Verlag, Berlin Heidel-
berg, 1999.

Delvaux, D. and Barth, A.: African stress pattern from formal in-
version of focal mechanism data, Tectonophysics, 482, 105–128,
https://doi.org/10.1016/j.tecto.2009.05.009, 2010.

Delvaux, D., Mulumba, J.-L., Sebagenzi, M. N. S., Bondo,
S. F., Kervyn, F., and Havenith, H.-B.: Seismic haz-
ard assessment of the Kivu rift segment based on a
new seismotectonic zonation model (western branch, East
African Rift system), J. Afr. Earth Sci., 134, 831–855,
https://doi.org/10.1016/j.jafrearsci.2016.10.004, 2017.

Depicker, A., Jacobs, L., Delvaux, D., Havenith, H.-B.,
Maki Mateso, J.-C., Govers, G., and Dewitte, O.: The added
value of a regional landslide susceptibility assessment: The
western branch of the East African Rift, Geomorphology, 353,
106886, https://doi.org/10.1016/j.geomorph.2019.106886, 2020.

Dewitte, O., Dille, A., Depicker, A., Kubwimana, D., Maki-Mateso,
J.-C., Mugaruka Bibentyo, T., Uwihirwe, J., and Monsieurs, E.:
Constraining landslide timing in a data-scarce context: from re-
cent to very old processes in the tropical environment of the
North Tanganyika-Kivu Rift region, Landslides, 18, 161–177,
https://doi.org/10.1007/s10346-020-01452-0, 2021.

DiBiase, R. A. and Whipple, K. X.: The influence of erosion thresh-
olds and runoff variability on the relationships among topogra-
phy, climate, and erosion rate, J. Geophys. Res.-Earth, 116, 1–17,
https://doi.org/10.1029/2011JF002095, 2011.

DiBiase, R. A., Whipple, K. X., Heimsath, A. M., and Ouimet,
W. B.: Landscape form and millennial erosion rates in the San
Gabriel Mountains, CA, Earth Planet. Sc. Lett., 289, 134–144,
https://doi.org/10.1016/j.epsl.2009.10.036, 2010.

Dinku, T., Ceccato, P., and Connor, S. J.: Challenges of
satellite rainfall estimation over mountainous and arid
parts of east africa, Int. J. Remote Sens., 32, 5965–5979,
https://doi.org/10.1080/01431161.2010.499381, 2011.

Dykes, A. P.: Weathering-limited rainfall-triggered shallow
mass movements in undisturbed steepland tropical rainfor-
est, Geomorphology, 46, 73–93, https://doi.org/10.1016/S0169-
555X(02)00055-7, 2002.

Egholm, D. L., Knudsen, M. F., and Sandiford, M.: Lifes-
pan of mountain ranges scaled by feedbacks between
landsliding and erosion by rivers, Nature, 498, 475–478,
https://doi.org/10.1038/nature12218, 2013.

Ellis, E. C., Goldewijk, K. K., Siebert, S., Lightman, D.,
and Ramankutty, N.: Anthropogenic transformation of the
biomes, 1700 to 2000, Global Ecol. Biogeogr., 19, 589–606,
https://doi.org/10.1111/j.1466-8238.2010.00540.x, 2010.

Glade, T.: Landslide occurrence as a response to land use change:
a review of evidence from New Zealand, Catena, 51, 297–314,
https://doi.org/10.1016/j.cageo.2015.04.007, 2003.

Guthrie, R. H.: The effects of logging on frequency and
distribution of landslides in three watersheds on Vancou-
ver Island, British Columbia, Geomorphology, 43, 273–292,
https://doi.org/10.1016/S0169-555X(01)00138-6, 2002.

Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall
intensity-duration control of shallow landslides and debris flows:
An update, Landslides, 5, 3–17, https://doi.org/10.1007/s10346-
007-0112-1, 2008.

Hansen, M. C., Potapov, P., Moore, R., Hancher, M., Tu-
rubanova, S., Tyukavina, A., Thau, D., Stehman, S., Goetz,
S., Loveland, T., Kommareddy, A., Egorov, A., Chini, L., Jus-
tice, C., and Townshend, J.: High-Resolution Global Maps of
21st-Century Forest Cover Change, Science, 342, 850–853,
https://doi.org/10.1126/science.1244693, 2013.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara,
G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flem-
ming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S.,
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The
ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/qj.3803, 2020.

Holdo, R. M., Nippert, J. B., and Mack, M. C.: Rooting depth
varies differentially in trees and grasses as a function of mean
annual rainfall in an African savanna, Oecologia, 186, 269–280,
https://doi.org/10.1007/s00442-017-4011-4, 2018.

Hufschmidt, G. and Crozier, M. J.: Evolution of natural
risk: Analysing changing landslide hazard in Welling-
ton, Aotearoa/New Zealand, Nat. Hazards, 45, 255–276,
https://doi.org/10.1007/s11069-007-9158-6, 2008.

Hungr, O., Lerouel, S., and Picarelli, L.: The Varnes classifica-
tion of landslide types, an update, Landslides, 11, 167–194,
https://doi.org/10.1007/s10346-013-0436-y, 2014.

Jakob, M.: The Impacts of Logging on landslide activity at
Clayoquot Sound, British Columbia, Catena, 38, 279–300,
https://doi.org/10.1016/S0341-8162(99)00078-8, 2000.

JRC and CIESIN: GHS population grid, derived from GPW4, mul-
titemporal (1975, 1990, 2000, 2015), available at: http://data.
europa.eu/89h/jrc-ghsl-ghs_pop_gpw4_globe_r2015a, (last ac-
cess: 12 August 2020), 2015.

Earth Surf. Dynam., 9, 445–462, 2021 https://doi.org/10.5194/esurf-9-445-2021

https://doi.org/10.1002/2016JF003914
https://doi.org/10.1016/S0169-555X(01)00153-2
https://doi.org/10.1016/S0169-555X(01)00153-2
https://doi.org/10.1038/379505a0
https://doi.org/10.5194/esurf-8-447-2020
https://doi.org/10.5194/esurf-8-447-2020
https://doi.org/10.1016/j.geomorph.2009.09.010
https://doi.org/10.1016/j.tecto.2009.05.009
https://doi.org/10.1016/j.jafrearsci.2016.10.004
https://doi.org/10.1016/j.geomorph.2019.106886
https://doi.org/10.1007/s10346-020-01452-0
https://doi.org/10.1029/2011JF002095
https://doi.org/10.1016/j.epsl.2009.10.036
https://doi.org/10.1080/01431161.2010.499381
https://doi.org/10.1016/S0169-555X(02)00055-7
https://doi.org/10.1016/S0169-555X(02)00055-7
https://doi.org/10.1038/nature12218
https://doi.org/10.1111/j.1466-8238.2010.00540.x
https://doi.org/10.1016/j.cageo.2015.04.007
https://doi.org/10.1016/S0169-555X(01)00138-6
https://doi.org/10.1007/s10346-007-0112-1
https://doi.org/10.1007/s10346-007-0112-1
https://doi.org/10.1126/science.1244693
https://doi.org/10.1002/qj.3803
https://doi.org/10.1007/s00442-017-4011-4
https://doi.org/10.1007/s11069-007-9158-6
https://doi.org/10.1007/s10346-013-0436-y
https://doi.org/10.1016/S0341-8162(99)00078-8
http://data.europa.eu/89h/jrc-ghsl-ghs_pop_gpw4_globe_r2015a
http://data.europa.eu/89h/jrc-ghsl-ghs_pop_gpw4_globe_r2015a


A. Depicker et al.: Deforestation, rejuvenation, and landslides in the Kivu rift 461

Kaufmann, G., Hinderer, M., and Romanov, D.: Shaping the Rwen-
zoris: balancing uplift, erosion, and glaciation, Int. J. Earth
Sci., 105, 1761–1778, https://doi.org/10.1007/s00531-015-1174-
2, 2016.

Kirby, E. and Whipple, K. X.: Expression of active tecton-
ics in erosional landscapes, J. Struct. Geol., 44, 54–75,
https://doi.org/10.1016/j.jsg.2012.07.009, 2012.

Korup, O.: Rock type leaves topographic signature in landslide-
dominated mountain ranges, Geophys. Res. Lett., 35, 1–5,
https://doi.org/10.1029/2008GL034157, 2008.

Korup, O. and Weidinger, J. T.: Rock type, precipitation, and
the steepness of Himalayan threshold hillslopes, Geologi-
cal Society, London, Special Publications, 353, 235–249,
https://doi.org/10.1144/SP353.12, 2011.

Laghmouch, M., Kalikone, C., Ilombe, G., Ganza, G., Delvaux,
D., Safari, E., Bachinyaga, J., Wazi, N., Nzolang, C., Fernan-
dez, M., Nimpagaritse, G., Tack, L., Dewaele, S., and Kervyn,
F.: Carte géologique du Kivu au 1/500000, Africamuseum, Ter-
vuren, Belgique, Université Officielle de Bukavu, Bukavu, DRC,
2018.

Larsen, I. J. and Montgomery, D. R.: Landslide erosion cou-
pled to tectonics and river incision, Nat. Geosci., 5, 468–473,
https://doi.org/10.1038/NGEO1479, 2012.

Larsen, I. J., Montgomery, D. R., and Korup, O.: Landslide ero-
sion controlled by hillslope material, Nat. Geosci., 3, 247–251,
https://doi.org/10.1038/NGEO776, 2010.

Li, G., West, A. J., Densmore, A. L., Jin, Z., Parker, R. N., and
Hilton, R. G.: Seismic mountain building: landslides associated
with the 2008 Wenchuan earthquake in the context of a general-
ized model for earthquake volume balance, Geochem. Geophy.
Geosy., 15, 833–844, 2014.

Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.:
Landslide inventories and their statistical properties, Earth Surf.
Proc. Land., 29, 687–711, https://doi.org/10.1002/esp.1064,
2004.

Marc, O., Hovius, N., Meunier, P., Uchida, T., and Hayashi, S.:
Transient changes of landslide rates after earthquakes, Geology,
43, 883–886, https://doi.org/10.1130/G36961.1, 2015.

McDonald, J.: Handbook of Biological Statistics, Sparky House
Publishing, Baltimore, MD, 3rd edn., 2014.

Milledge, D. G., Bellugi, D., Mckean, J. A., Densmore,
A. L., and Dietrich, W. E.: A multidimensional stabil-
ity model for predicting shallow landslide size and shape
across landscapes, J. Geophys. Res.-Earth, 119, 2481–2504,
https://doi.org/10.1002/2014JF003135, 2014.

Monsieurs, E., Jacobs, L., Michellier, C., Basimike, J., Ba-
mulezi Ganza, G., Kervyn, F., Maki Mateso, J.-C., Mu-
garuka Bibentyo., T., Kalikone Buzera, C., Nahimana, L.,
Ndayisenga, A., Nkurunziza, P., Thiery, W., Demoulin, A.,
Kervyn, M., and Dewitte, O.: Landslide inventory for hazard
assessment in a data- poor context: a regional-scale approach
in a tropical African environment, Landslides, 15, 2195–2209,
https://doi.org/10.1007/s10346-018-1008-y, 2018a.

Monsieurs, E., Kirschbaum, D. B., Tan, J., Maki Mateso, J. C.,
Jacobs, L., Plisnier, P. D., Thiery, W., Umutoni, A., Musoni,
D., Bibentyo, T. M., Ganza, G. B., Mawe, G. I., Bagalwa, L.,
Kankurize, C., Michellier, C., Stanley, T., Kervyn, F., Kervyn,
M., Demoulin, A., and Dewitte, O.: Evaluating TMPA rain-
fall over the sparsely gauged East African Rift, J. Hydrometeo-

rol., 19, 1507–1528, https://doi.org/10.1175/JHM-D-18-0103.1,
2018b.

Montgomery, D., Schmidt, K., Greenberg, H., and Di-
etrich, W.: Forest clearing and regional landsliding,
Geology, 28, 311–314, https://doi.org/10.1130/0091-
7613(2000)28<311:FCARL>2.0.CO;2, 2000.

Montgomery, D. R.: Slope distributions, threshold hillslopes,
and steady-state topography, Am. J. Sci., 301, 432–454,
https://doi.org/10.2475/ajs.301.4-5.432, 2001.

Montgomery, D. R. and Brandon, M. T.: Topographic controls
on erosion rates in tectonically active mountain ranges, Earth
Planet. Sc. Lett., 201, 481–489, https://doi.org/10.1016/S0012-
821X(02)00725-2, 2002.

Mugagga, F., Kakembo, V., and Buyinza, M.: Land use
changes on the slopes of Mount Elgon and the implica-
tions for the occurrence of landslides, Catena, 90, 39–46,
https://doi.org/10.1016/j.catena.2011.11.004, 2012.

Musumba Teso, P., Kavira, M., and Katcho, K.: Key Factors Driving
Deforestation in North-Kivu Province, Eastern DR-Congo Using
GIS and Remote Sensing, American Journal of Geographic In-
formation System, 8, 11–25, available at: http://article.sapub.org/
10.5923.j.ajgis.20190801.02.html (last access: 28 May 2021),
2019.

Parker, R. N., Hales, T. C., Mudd, S. M., Grieve, S. W. D., and
Constantine, J. A.: Colluvium supply in humid regions limits
the frequency of storm-triggered landslides, Sci. Rep., 6, 34438,
https://doi.org/10.1038/srep34438, 2016.

Pouclet, A., Bellon, H., and Bram, K.: The Cenozoic volcanism
in the Kivu rift: Assessment of the tectonic setting, geochem-
istry, and geochronology of the volcanic activity in the South-
Kivu and Virunga regions, J. Afr. Earth Sci., 121, 219–246,
https://doi.org/10.1016/j.jafrearsci.2016.05.026, 2016.

Prancevic, J. P., Lamb, M. P., McArdell, B. W., Rickli, C., and
Kirchner, J. W.: Decreasing Landslide Erosion on Steeper Slopes
in Soil-Mantled Landscapes, Geophys. Res. Lett., 47, 1–9,
https://doi.org/10.1029/2020GL087505, 2020.

Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G.,
Gallen, S. F., Chamlagain, D., and Godt, J. W.: The size,
distribution, and mobility of landslides caused by the 2015
Mw7.8 Gorkha earthquake, Nepal, Geomorphology, 301, 121–
138, https://doi.org/10.1016/j.geomorph.2017.01.030, 2018.

Roche, E. and Nzabandora, C. K.: From the congo-nile ridge to
the hills area: 2500 years of environmental evolution in south-
ern rwanda, Geo-Eco-Trop, 44, 43–63, 2020.

Safran, E. B., Bierman, P. R., Aalto, R., Dunne, T., Whipple, K. X.,
and Caffee, M.: Erosion rates driven by channel network incision
in the Bolivian Andes, Earth Surf. Proc. Land., 30, 1007–1024,
https://doi.org/10.1002/esp.1259, 2005.

Saria, E., Calais, E., Stamps, D. S., Delvaux, D., and
Hartnady, C. J. H.: Present-day kinematics of the East
African rift, J. Geophys. Res.-Sol. Ea., 119, 3584–3600,
https://doi.org/10.1002/2013JB010901, 2014.

Schmidt, K. M. and Montgomery, D. R.: Limits to Relief, Science,
270, 617–620, https://doi.org/10.1126/science.270.5236.617,
1995.

Schoenbohm, L. M., Whipple, K. X., Burchfiel, B. C., and
Chen, L.: Geomorphic constraints on surface uplift, exhuma-
tion, and plateau growth in the Red River region, Yun-

https://doi.org/10.5194/esurf-9-445-2021 Earth Surf. Dynam., 9, 445–462, 2021

https://doi.org/10.1007/s00531-015-1174-2
https://doi.org/10.1007/s00531-015-1174-2
https://doi.org/10.1016/j.jsg.2012.07.009
https://doi.org/10.1029/2008GL034157
https://doi.org/10.1144/SP353.12
https://doi.org/10.1038/NGEO1479
https://doi.org/10.1038/NGEO776
https://doi.org/10.1002/esp.1064
https://doi.org/10.1130/G36961.1
https://doi.org/10.1002/2014JF003135
https://doi.org/10.1007/s10346-018-1008-y
https://doi.org/10.1175/JHM-D-18-0103.1
https://doi.org/10.1130/0091-7613(2000)28<311:FCARL>2.0.CO;2
https://doi.org/10.1130/0091-7613(2000)28<311:FCARL>2.0.CO;2
https://doi.org/10.2475/ajs.301.4-5.432
https://doi.org/10.1016/S0012-821X(02)00725-2
https://doi.org/10.1016/S0012-821X(02)00725-2
https://doi.org/10.1016/j.catena.2011.11.004
http://article.sapub.org/10.5923.j.ajgis.20190801.02.html
http://article.sapub.org/10.5923.j.ajgis.20190801.02.html
https://doi.org/10.1038/srep34438
https://doi.org/10.1016/j.jafrearsci.2016.05.026
https://doi.org/10.1029/2020GL087505
https://doi.org/10.1016/j.geomorph.2017.01.030
https://doi.org/10.1002/esp.1259
https://doi.org/10.1002/2013JB010901
https://doi.org/10.1126/science.270.5236.617


462 A. Depicker et al.: Deforestation, rejuvenation, and landslides in the Kivu rift

nan Province, China, Geol. Sco. Am. Bull., 116, 895–909,
https://doi.org/10.1130/B25364.1, 2004.

Schwanghart, W. and Scherler, D.: Bumps in river pro-
files: uncertainty assessment and smoothing using quan-
tile regression techniques, Earth Surf. Dynam., 5, 821–839,
https://doi.org/10.5194/esurf-5-821-2017, 2017.

Sidle, R. C. and Bogaard, T. A.: Dynamic earth system and ecolog-
ical controls of rainfall-initiated landslides, Earth-Sci. Rev., 159,
275–291, https://doi.org/10.1016/j.earscirev.2016.05.013, 2016.

Sidle, R. C. and Ochiai, H.: Landslides: Processes, Prediction
and Land Use, American Geophysical Union, Washington, DC
20009, USA, https://doi.org/10.1029/WM018, 2006.

Sidle, R. C., Ziegler, A. D., Negishi, J. N., Nik, A. R., Siew, R.,
and Turkelboom, F.: Erosion processes in steep terrain – Truths,
myths, and uncertainties related to forest management in South-
east Asia, Forest Ecol. Manag., 224, 199–225, 2006.

Smets, B. and Depicker, A.: PAStECA: Historical aerial Pho-
tographs and ArchiveS to assess Environmental Changes in Cen-
tral Africa, available at: http://pasteca.africamuseum.be/, last ac-
cess: 25 May 2021.

Smets, B., Kervyn, M., D’Oreye, N., and Kervyn, F.: Spatio-
temporal dynamics of eruptions in a youthful extensional setting:
Insights from Nyamulagira Volcano (D.R. Congo), in the western
branch of the East African Rift, Earth-Sci. Rev., 150, 305–328,
https://doi.org/10.1016/j.earscirev.2015.08.008, 2015.

Tyukavina, A., Hansen, M. C., Potapov, P., Parker, D., Okpa, C.,
Stehman, S. V., Kommareddy, I., and Turubanova, S.: Congo
Basin forest loss dominated by increasing smallholder clearing,
Sci. Adv., 4, eaat2993, https://doi.org/10.1126/sciadv.aat2993,
2018.

USGS: Shuttle Radar Topography Mission, Global Land Cover
Facility 1 Arc-Second, University of Maryland, College Park,
Maryland, 2006.

USGS: LANDSAT-8, ETM+SLC-on. 60 m resolution, USGS
(United States Geological Survey), Reston, VA 20192, USA,
2018.

Van de Walle, J., Thiery, W., Brousse, O., Souverijns, N., Demuzere,
M., and van Lipzig, N. P.: A convection-permitting model for the
Lake Victoria Basin: evaluation and insight into the mesoscale
versus synoptic atmospheric dynamics, Clim. Dynam., 54, 1779–
1799, https://doi.org/10.1007/s00382-019-05088-2, 2020.

Vanmaercke, M., Ardizzone, A., Rossi, M., and Guzzetti, F.: Ex-
ploring the effects of seismicity on landslides and catchment sed-
iment yield: An Italian case study, Geomorphology, 278, 171–
183, https://doi.org/10.1016/j.geomorph.2016.11.010, 2017.

Whipple, K. X. and Meade, B. J.: Orogen response to changes in
climatic and tectonic forcing, Earth Planet. Sc. Lett., 243, 218–
228, https://doi.org/10.1016/j.epsl.2005.12.022, 2006.

Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson,
J., Spyropolou, K., Crosby, B., and Sheehan, D.: Tecton-
ics from topography: Procedures, promise, and pitfalls, Spe-
cial Paper of the Geological Society of America, 398, 55–74,
https://doi.org/10.1130/2006.2398(04), 2006.

Earth Surf. Dynam., 9, 445–462, 2021 https://doi.org/10.5194/esurf-9-445-2021

https://doi.org/10.1130/B25364.1
https://doi.org/10.5194/esurf-5-821-2017
https://doi.org/10.1016/j.earscirev.2016.05.013
https://doi.org/10.1029/WM018
http://pasteca.africamuseum.be/
https://doi.org/10.1016/j.earscirev.2015.08.008
https://doi.org/10.1126/sciadv.aat2993
https://doi.org/10.1007/s00382-019-05088-2
https://doi.org/10.1016/j.geomorph.2016.11.010
https://doi.org/10.1016/j.epsl.2005.12.022
https://doi.org/10.1130/2006.2398(04)

	Abstract
	Introduction
	The North Tanganyika–Kivu rift region
	Methods
	Regional controls on landslide erosion
	Forest cover and deforestation
	Landscape rejuvenation
	Rainfall
	Rock strength and threshold slopes

	Quantifying shallow landslide erosion
	Inventory
	Calculating landslide erosion rates from a biased © Google Earth inventory
	Impact of slope on landslide erosion
	Linking forest cover and deforestation to landslide erosion


	Results
	Regional controls on landslide erosion
	Shallow landslide erosion in the NTK rift: impacts of deforestation and rejuvenation

	Discussion
	Interactions between deforestation, rejuvenation, and landslide erosion
	A new approach for calculating landslides erosion rates?

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

