Isotopic constraints on the Si-biogeochemical cycle of the Antarctic Zone in the Kerguelen area (KEOPS)

François Fripiat, Anne-Julie Cavagna, Nicolas Savoye, Frank Dehairs, Luc André, Damien Cardinal

A R T I C L E I N F O

Article history:
Received 13 August 2009
Received in revised form 3 June 2010
Accepted 11 August 2010
Available online 21 August 2010

Keywords:
Diatoms
Silicon isotopes
Isotope fractionation
Silicon cycle
Southern Ocean
Antarctic Zone

A B S T R A C T

Estimation of the silicon (Si) mass balance in the ocean from direct measurements (Si uptake-dissolution rates …) is plagued by the strong temporal and spatial variability of the surface ocean as well as methodological artifacts. Tracers with different sensitivities toward physical and biological processes would be of great complementary use. Silicon isotopic composition is a promising proxy to improve constraints on the Si-biogeochemical cycle, since it integrates over longer timescales in comparison with direct measurements and since the isotopic balance allows to resolve the processes involved, i.e. uptake, dissolution, mixing. Si-isotopic signatures of seawater Si(OH)₄ and biogenic silica (bSiO₂) were investigated in late summer 2005 during the KEOPS experiment, focusing on two contrasting biogeochemical areas in the Antarctic Zone: a natural iron-fertilized area above the Kerguelen Plateau (<500 m water depth) and the High Nutrient Low Chlorophyll area (HNLC) east of the plateau (>1000 m water depth). For the HNLC area the Si-isotope constraint identified Upper Circumpolar Deep Water as being the ultimate Si-source. The latter supplies summer mixed layer with 4.0 ± 0.7 mol Si m⁻² yr⁻¹. This supply must be equivalent to the net annual bSiO₂ production and exceeds the seasonal depletion as estimated from a simple mixed layer mass balance (2.5 ± 0.2 mol Si m⁻² yr⁻¹). This discrepancy reveals that some 1.5 ± 0.7 mol Si m⁻² yr⁻¹ must be supplied to the mixed layer during the stratification period. For the fertilized plateau bloom area, a low apparent mixed layer isotopic fractionation value (Δ³⁰Si) probably reflects (1) a significant impact of bSiO₂ dissolution, enriching the bSiO₂ pool in heavy isotope; and/or (2) a high Si uptake over supply ratio in mixed layer at the beginning of the bloom, following an initial closed system operating mode, which, however, becomes supplied toward the end of the bloom (low Si uptake over supply ratio) with isotopically light Si(OH)₄ from below when the surface Si(OH)₄ pool is significantly depleted. We estimated a net integrated bSiO₂ production of 10.5 ± 1.4 mol Si m⁻² yr⁻¹ in the AASW above the plateau, which includes a significant contribution of bSiO₂ production below the euphotic layer. However, advection which could be significant for this area has not been taken into account in the latter estimation based on a 1D approach of the plateau system. Finally, combining the KEOPS Si-isotopic data with those from previous studies, we refined the average Si-isotopic fractionation factor to −1.2 ± 0.2‰ for the Antarctic Circumpolar Current.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Southern Ocean plays a major role in global circulation and redistributes nutrients toward the surface layer at the global scale via the upper limb of the meridional circulation (Sarmiento et al., 2004, 2007). As a result biogeochemical processes in Southern Ocean surface water have a significant impact on nutrient availability in low latitude surface waters (Sarmiento et al., 2004). In the Southern Ocean, diatoms play a key role in the carbon biological pump, exporting both biogenic silica (bSiO₂) and organic carbon to the deep ocean (Buesseler, 1998; Buesseler et al., 2001). The Southern Ocean is the largest High Nutrient Low Chlorophyll (HNLC) area and macronutrient (i.e., nitrate and phosphate) concentrations remain high throughout the year across much of the Antarctic Circumpolar Current (ACC). Dissolved silicon, which is mainly present in the form of silicic acid (Si(OH)₄) sometimes referred to as silicate), behaves differently from other macro-nutrients. Unlike for nitrate which remains relatively constant, the region of the ACC between the Antarctic Polar Front (APF) and the Seasonal Ice Zone is marked by an extremely strong Si(OH)₄ positive concentration gradient southward (Brzezinski et al., 2001; Quéguiner and Brzezinski, 2002). Diatom biomass and silica production are likely Si-limited during the entire
productive seasons north of the APF, productive season, while those south of the front become Si-limited only at the end of the growth season (Nelson et al., 2001). The Si-N decoupling and the HNLC characteristic features have been attributed to iron, light and Si co-limitations (Brzezinski et al., 2005; De Baar et al., 2005; Boyd, 2007), along with the processes involved in the so called “silicate pump” the deeper remineralization of Si relative to C and N (Dugdale et al., 1995).

The Kerguelen Ocean and Plateau compared Study (KEOPS) was conducted to investigate a naturally iron-fertilized area located to the south-east of the Kerguelen Islands in the Indian sector of the Southern Ocean where a well-developed bloom is observed annually (Mongin et al., 2008; Fig. 1). Results from KEOPS have provided evidence that deep iron-rich waters supply iron to the surface waters over the Kerguelen Plateau through enhanced vertical mixing triggered by internal wave activity (Blain et al., 2007; Park et al., 2008b).

Considering that diatoms are the main contributors to Southern Ocean primary production (Nelson et al., 2002), a better understanding of the Si-biogeochemical cycle is necessary to assess the Southern Ocean biological pump and the fertility potential of the waters exported out of the ACC toward lower latitudes. The interpretation of integrated bSiO$_2$ production–dissolution rates and bSiO$_2$ export is plagued by their strong temporal and spatial variabilities, as well as by artifacts associated with their measurement (e.g., bottle effects, snapshots and/or sediment trap biases). The isotopic composition of silicon (δ^{30}Si) is a promising proxy to alleviate effects of such temporal and spatial variabilities. δ^{30}Si signature is also able to trace back sources and the magnitude of transformation of Si. Si(OH)$_4$ uptake by diatoms leaves a clear imprint on the isotopic compositions of both Si (OH)$_4$ and bSiO$_2$. Field studies (Varela et al., 2004; Alleman et al., 2005; Cardinal et al., 2005, 2007; Reynolds et al., 2006; Fripiat et al., 2007; Beucher et al., 2008; Cavagna et al., in press) and controlled laboratory studies (De La Rocha et al., 1997; Milligan et al., 2004) have revealed isotopic fractionation associated with preferential incorporation of 28Si by diatoms. The 30Si fractionation factor ($-1.1 \pm 0.4 \%$) reported by De La Rocha et al. (1997) seems to be independent of temperature, species (De La Rocha et al., 1997) and cell size (Cardinal et al., 2007). Recently Demarest et al. (2009) reported an isotopic fractionation associated with bSiO$_2$ dissolution whereby preferentially light Si-isotopes are released (30Si$= -0.55 \%$). By increasing the euphotic bSiO$_2$ dissolution/production ratio the overall isotopic fractionation associated with Si uptake would be dampened.

In this study, we compare Si-isotopic compositions from different water masses above the Kerguelen Plateau (the fertilized area) and off plateau (the HNLC area). We used these signatures to trace the routes of the Si(OH)$_4$ supply to the euphotic layer and to make an attempt to close the Si-biogeochemical budget in this area.

![Fig. 1.](image-url) (a) Map of the study area with bathymetry and geostrophic circulation (black arrows; following Park et al. (2008a) and Zhang et al. (2008)). The Fawn Through splits the Kerguelen Plateaus, and constitutes a favored zonal passage for the circumpolar flow crossing the plateau, "Fawn Through Current" (Park et al., 2008a). The KEOPS stations are represented by black dots, while stars refer to the stations with Si-isotopic signatures available in this study. The hemispheric projection indicates the different Si-isotopic studies in the Southern Ocean: star: Varela et al. (2004); triangle: Cardinal et al. (2005, 2007); star: Cavagna et al. (in press), and dot: KEOPS (this study). ACC: Antarctic Circumpolar Current; APF: Antarctic Polar Front. (b) Chlorophyll-a section (0–200 m depth) across the investigated KEOPS stations (data from Uitz et al. (2009)).
2. Material and methods

2.1. The Kerguelen Ocean and Plateau compared Study (KEOPS)

The KEOPS cruise was conducted around the Kerguelen Islands from January 19th to February 13th, 2005, aboard R.V. Marion Dufresne. Its major aim was to investigate the biological pump under natural iron fertilization conditions sustained by the plateau (Blaín et al., 2007). The cruise track consisted of three transects (A, B, and C; Fig. 1a) across the plateau (bathymetry <500 m) reaching to the off-plateau HNLNC area (bathymetry >1000 m). Two reference stations, A3 and C11, were selected as representative for the plateau area and the off-plateau HNLNC area, respectively. These reference stations were visited several times. Satellite-derived chlorophyll data for the 2004–2005 season indicated that the bloom started early November, reached its maximum in December and collapsed in February. KEOPS was therefore conducted during the demise of the bloom (Mongin et al., 2008).

2.2. Sampling and analyses

Seawater was collected using CTD Rosette mounted with 10 l Niskin bottles. Samples for biogenic silica δ30Si analysis were generally collected at four depths between surface and ~200 m. For dissolved silicon δ30Si, samples were collected up to 15 depths in the upper 1000 m for the off-shelf water column and an additional sample taken at 2000 m.

We collected samples for silicon isotopic composition of bSiO2 and Si(OH)4 at seven stations (plateau: A3, B1, B5 and C1; off-plateau: A11, B11 and C11; Fig. 1). Reference stations A3 and C11 were sampled twice at 18 and 10 days interval, respectively. Water samples were immediately filtered under pressure of 0.4 μm porosity polycarbonate membranes (± 1 to 4 l) using Perspex filtration units. Filtered seawater was stored in acid-cleaned polypropylene bottles at room temperature in dark. Nucleopore membranes were stored in polycarbonate Petri dishes and dried overnight at 50 °C.

Samples were processed at a land-based laboratory (RMCA, Tervuren). The membranes for bSiO2 were submitted to a wet-alkaline digestion (adapted from Ragueneau et al. (2005)) whereby bSiO2 is dissolved with a 0.2 mol l⁻¹ NaOH solution (pH 13.3) at 100 °C for 40 min. As this digestion can also dissolve some lithogenic silica, we also analyzed aluminum (Al) in the digested solution to check for possible lithogenic contamination. Al in digested samples remained below the Inductively Coupled Plasma Atomic Emission Spectrometry detection limit of 0.05 ppm, while Si concentrations varied between 14 and 91 ppm. Using a Si:Al ratio of 3.74 for average crust (Taylor and McLennan, 1985), the lithogenic silica would reach less than 0.18 ppm in the digested samples. Considering δ30Si signatures for clays to range from −2%o to 0%o (Basile-Doelsh, 2006) the maximum potential contribution of lithogenic Si appears to be negligible (Cardinal et al., 2007). Independent measurements by Mosseri et al. (2008) during KEOPS show the lithogenic contribution to the total particulate Si stock to average 7.3 ± 8.8%. One exception is station C1 located in shallow waters near Heard Island (Fig. 1) where the lithogenic fraction reached 32.2 ± 8.4%. However, at this station no samples were taken for δ30Si. Furthermore, Ragueneau et al. (2005) report that during the first step of alkaline digestion – the only step we performed on KEOPS samples – all bSiO2 and only a fraction of lithogenic silica were dissolved in agreement with the negligible lithogenic contamination for our samples.

Si(OH)4 and bSiO2 concentrations were measured on the same samples analyzed for Si-isotopic composition, via a colorimetric method (Grasshoff et al., 1983). Because Si(OH)4 concentrations at stations A3, B1 and A11 were too low (<10 μmol l⁻¹) to directly apply the Si purification procedure required for Si-isotopic measurements (De La Rocha et al., 1996), a Si(OH)4 preconcentration step was performed. This was achieved using a protocol adapted by Reynolds et al. (2006) from the MAGIC method (Karl and Tien, 1992): a two-step quantitative scavenging of Si(OH)4 by brucite [Mg(OH)2] precipitate was obtained by adding 20 ml of 1 μmol l⁻¹ NaOH per liter of seawater. The first precipitate was recovered by filtration (0.8 μm, polycarbonate membrane). To ensure complete Si-recovery a further 10 ml of NaOH 1 μmol l⁻¹ was added to the filtrate, which was then filtered once more. These precipitates were subsequently redissolved in 15 ml HCl (3 μmol l⁻¹).

Silicon was precipitated and purified following the triethylammonium molybdatoc precipitation method (De La Rocha et al., 1996). After combustion of the silicicolybdate precipitate in covered Pt crucibles, the pure cristobalite phase was transferred to pre-cleaned polypropylene vials. Dissolution of cristobalite was performed in a dilute HF/HCl mixture, as described in Cardinal et al. (2003).

Isotopic measurements were carried out on a Nu Plasma Multi-collector-Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS; ULB-RMCA, Brussels) using Mg external doping in dry plasma mode. Most of the Si-isotopic measurements [78% of Si(OH)4 samples; 8% of bSiO2 samples; and 55% of total samples] were performed following the methodology described by Cardinal et al. (2003). This method uses a low-resolution mode and cannot resolve the interference at δ30Si (mainly due to 13N16O), and silicon isotopic signatures are measured as δ30Si only. Following an upgrade of the Nu Plasma instrument, high resolution and pseudo high resolution were achieved, enabling the measurement of both δ30Si and δ31Si, as described in Abraham et al. (2008). Results are discussed here using δ30Si notation only. When only δ30Si was measured, results were converted into δ30Si using the theoretical conversion factor of 1.96 assuming a kinetic fractionation law (Young et al., 2002). Considering that Si uptake by diatoms is an enzymatic process (Hildebrand, 2008), the induced isotopic fractionation should follow a kinetic isotopic fractionation by analogy to C and N (François et al., 1993; Sigman et al., 2009). Diatoms drive the marine silicon cycle (Tréguer et al., 1995) and subsequently should control Si-isotopic distribution.

The precision and reproducibility (± 2 standard deviations) of the measurements were ±0.10‰ (δ30Si) and ±0.15‰ (δ31Si). Accuracy of the measurements was checked on a daily basis using secondary reference material (Diatomite) whose Si-isotopic composition was characterized by an inter-comparison exercise (e.g., Reynolds et al., 2007).

3. Results

3.1. Hydrology and biogeochemical characteristics of the KEOPS area

During KEOPS, the different water masses characteristic of the summer Antarctic Zone (AZ) were present (Park et al., 1998a,b, 2008a; see Table 1 for a list of abbreviations). A relatively warm, fresh, well Mixed Layer (ML) capped the subsurface temperature minimum layer, referred to as winter water (WW). WW is a remnant of the former winter ML [hereinafter referred to as Antarctic Surface Water (AASW)].
that is capped by seasonal warming and freshening of the uppermost surface waters, as shown by time-series observations at station KERFIX southwest of Kerguelen Island (Park et al., 1998a). Over the plateau, the geostrophic circulation is relatively sluggish and directed to the northwest following the local bathymetry (Fig. 1a, Park et al., 2008a). All stations were located south of the Antarctic Polar Front (APF) and separated from the direct influence of Kerguelen Island by a branch of this circumpolar jet (Fig. 1). The latter was characterized by low chlorophyll concentration (Mongin et al., 2008). However, mesoscale eddy activity at the APF could have sporadically advected waters from the north of the APF in the region of the northernmost stations (e.g., A11) (Mongin et al., 2008).

Based on the productivity criteria in Uitz et al. (2009), stations A1 to A3 and B1 to B5 were located within the bloom area (hereafter referred to as the fertilized bloom area). Off-shelf stations C11 and B11, as well as the stations in the South Eastern part of the plateau (C1–C7), were located within the HNLC area (Table 2). The remaining stations were in-between these two contrasting groups (e.g., A11). The fertilized bloom area was characterized by high primary and export production (Uitz et al., 2009; Savoye et al., 2008), as well as high bSiO2 concentrations (Mosseri et al., 2008) (Table 2). A massive bloom was observed above the Kerguelen Plateau over the course of austral summer 2005 (Mongin et al., 2008). This bloom was almost exclusively composed of relatively large diatoms (Armand et al., 2008). The HNLC area contrasts the plateau region by low biogenic silica content, as well as by low primary and export production (Table 2) (Mosseri et al., 2008; Savoye et al., 2008; Uitz et al., 2009). The difference between the fertilized and HNLC areas was clearly observed in the chlorophyll section (Fig. 1b).

In the fertilized bloom area, low Si(OH)4 concentrations coincided with high NO3 concentrations, indicating a strong decoupling between both nutrients (Mosseri et al., 2008). On the other hand, the HNLC area had high concentrations of both Si(OH)4 and NO3 (Table 2).

3.2. Dissolved silicon

Profiles of Si(OH)4 concentration and isotopic composition reveal a heavier isotopic composition in surface water, relative to deep waters, coinciding with a Si-depletion (Table 3; Fig. 2a,b). Similar conditions have been reported for the Atlantic, Southern and Pacific Oceans (De La Rocha et al., 2000; Cardinal et al., 2005; Reynolds et al., 2006; Beucher et al., 2008). Such vertical gradients are driven by diatom production combined with vertical mixing (Cardinal et al., 2005; Reynolds et al., 2006). For the different water masses identified by Park et al. (2008a), average δ30SiSi(OH)4 signatures were (Fig. 3f,g,h; Table 4): ML [0 to −100 m], +2.4 ± 0.3‰ (n = 23); WW [−100 to −400 m], +1.7 ± 0.2‰ (n = 32); Upper Circumpolar Deep Water (UCDW) [−400 to −1400 m], +1.3 ± 0.2‰ (n = 16); and Lower Circumpolar Deep Water (LCDW) [−1400 to −2600; sampling was performed only at 2000 m], +1.1 ± 0.2‰ (n = 3).

These vertical variations of δ30SiSi(OH)4 were in good agreement with previous values reported for the AZ (Table 4; see Fig. 1 for the location of these studies), indicating wide spatial biogeochemical uniformity for this zone regarding the silicon cycle. Notwithstanding this uniformity, a clear seasonality can be discerned in the surface waters. The summer ML δ30SiSi(OH)4 values in the present study (+2.4 ± 0.3‰ = average of the fertilized bloom and HNLC areas), as well as the summer values for the Atlantic EIFEX expedition (+2.6 ± 0.1‰ outside the fertilized patch; Cavagna et al., in press), were heavier than the spring values reported for the Australian sector: +1.9 ± 0.1‰ (Cardinal et al., 2005). This is consistent with the ML becoming more depleted in Si(OH)4 with progress of the growth season, yielding to an enrichment of the Si(OH)4 pool in 30Si, owing to preferential 18Si uptake by diatoms and their export. This type of seasonal concentration and isotopic effect has also been observed in the Pacific sector by Varela et al. (2004) during a bloom that was propagating from the APF southward through the AZ.

The ML at stations A3–1, A3–2, and B1 in the fertilized bloom area had lower Si(OH)4 concentrations (on average 2.1 μmol l−1) and heavier δ30SiSi(OH)4 values (+2.6% to +2.7‰) as compared to off-shelf stations (Figs. 2a,b and 3b,f). Station B5, located at the edge of a Si(OH)4 gradient between A3 and C11, was an exception. It had a higher Si(OH)4 concentration, reaching 13.9 μmol l−1, but had δ30SiSi(OH)4 values similar to those in the fertilized bloom area (A3 and B1). Mosseri et al. (2008) observed the highest biogenic silica production rates at station B5, while bSiO2 production rates at A3 were low and similar to those at station C11 (Mosseri et al., 2008). This situation probably reflects the shift of the bloom from A3 to the more Si-replete areas around B5, that was reported from satellite observations (Mongin et al., 2008) and predicted by a phytoplankton class-specific primary production model (Uitz et al., 2009). Site B5 thus appears to show different characteristics from the fertilized bloom area (A3 and B1), and therefore was excluded from the mass and isotopic balance calculations for the latter (Section 4.4.3).

The low production HNLC stations C11–1, C11–2 and B11 (Uitz et al., 2009) were characterized by high ML Si(OH)4 concentrations (on average 27.2 μmol l−1) and lighter δ30SiSi(OH)4 (+2.1 to +2.3‰) (Figs. 2a,b and 3b,f). In contrast to the HNLC conditions, site A11 had the heaviest ML δ30SiSi(OH)4 (+2.8 ± 0.1‰) coinciding with near complete Si-depletion (4.6 ± 2.6 μmol l−1). The occurrence of such a heavy isotopic signature fits with an advection of Si-depleted water from north of the APF that is associated with heavier δ30SiSi(OH)4 (Varela et al., 2004; Cardinal et al., 2005) and was in agreement with observed mesoscale eddy activity associated with the APF (Mongin et al., 2008). The low productivity station C1 (Uitz et al., 2009) at the southern end of the plateau had a lighter δ30SiSi(OH)4 (+1.9‰) than for the HNLC area, but a similar Si(OH)4 concentration (26.6 μmol l−1).

Table 2

Biogeochemical properties during KEOPS.

<table>
<thead>
<tr>
<th>Stations</th>
<th>Si(OH)4</th>
<th>NO3</th>
<th>Mixed layer depth</th>
<th>Primary production</th>
<th>bSiO2 standing stock</th>
<th>Export production (EP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(μmol l−1)</td>
<td>(μmol l−1)</td>
<td>m</td>
<td>g C m−2 d−1</td>
<td>mmol m−2</td>
<td>ng C m−2 d−1</td>
</tr>
<tr>
<td>Fertilized area</td>
<td>2.1</td>
<td>23.0</td>
<td>70–100</td>
<td>-1</td>
<td>1100 ± 600</td>
<td>222</td>
</tr>
<tr>
<td>B1–B5</td>
<td>29.4</td>
<td>70–100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C transect</td>
<td>27.2</td>
<td>-0.3</td>
<td>350 ± 100</td>
<td>85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| HNLC area | | | | |
| B9–B11 | | | | |

a Autoanalyzer onboard.
b From Park et al. (2008a).
c Integrated over the euphotic layer (from Uitz et al. (2009)).
d Integrated from 0 to 200 m (from Mosseri et al. (2008)).
e Export at 125 m (from Savoye et al. (2008)).
This shallow station (bottom depth 150 m) was located close to Heard Island, and the ML reached the underlying basalt floor. Knowing that ocean island basals have a δ30Si signature of −0.4±0.1‰ (Douthitt, 1992; Georg et al., 2007) the light isotopic composition of dissolved silicate at C1 could reflect a significant contribution of basalt alteration into the ML Si(OH)₄ pool. Based on a Monte Carlo simulation (normal distribution, n=1000) with ocean island basalts and HNLC-ML as δSi end-members, we estimate this contribution at 10±5% (i.e., 2.6±1.3 μmol L⁻¹). Selecting either HNL or C1 ML end-member Si(OH)₄ concentration does not affect the outcome of the previous calculation. Based on the Nd isotopic balance calculation (Jeandel et al., submitted for publication) identified basalt alteration process at C1 that should supply significant lithogenic fluxes of elements Si, Mg, Ca, Fe to the ML. For Si, such contribution could be 2 to 3 μmol L⁻¹ (C. Jeandel, pers. comm., 2010) which is similar to our estimate. We are unable to determine the contribution of this basalt end-member with better precision because (1) a limited number of samples were collected and (2) the Si-isotopic fractionation factor associated with weathering process is largely unknown (Ziegler et al., 2005). Furthermore, advection from southern AASW which is likely to have a lower δ30Si signature (Varela et al., 2004; Cardinal et al., 2005) could also be significant at this southernmost C1 station (Fig. 1a). Overall we conclude that the silicon signatures at the A11 and C1 sites are intermediate between those for the fertilized and the HNLC areas and therefore were not taken into account in the mass and isotopic balance calculations for the HNLC area (C11 and B11; Section 4.3.2).

The ML in the fertilized bloom and HNLC areas exhibited significantly different δ30Si signatures, reflecting different degrees of Si-utilization by diatoms, which were dominant throughout KEOPS (Armand et al., 2008). A trend in the WW (100–400 m) composition between the fertilized bloom and the HNLC waters (Table 4 and Fig. 3c,g) was also observed, with the former having a lower Si(OH)₄ concentration (34.2 μmol L⁻¹) and a heavier δ30Si signature (+1.9‰), while the latter showed a higher Si(OH)₄ concentrations and lighter isotopic signature (52.5 μmol L⁻¹ and +1.5‰).

3.3. Biogenic silica

The fertilized bloom ML region showed heavier δ30Si signatures than the HNLC region, similar to the dissolved δ30Si observations (+2.3±0.1‰ vs. +1.1±0.1‰, respectively) (Figs. 2c,d and 3a,e;
Table 4). Stations A11 and B5 had intermediate ML Si-isotopic compositions (+2.0±0.1‰ and +1.6±0.1‰, respectively), as well as Si(OH)₄. δ³⁰Si_SiO₂ values were systematically lighter than δ³⁰Si_Si(OH)₄ in agreement with the preferential uptake of light Si-isotopes by diatoms (De La Rocha et al., 1997; Milligan et al., 2004; Varela et al., 2004; Fig. 2.

Fig. 2. Upper 550 m profiles for the stations characteristic of the fertilized (plateau) bloom area (white symbols), HNLC area (black symbols), and the three intermediates stations, A11 (grey dots), B5 (grey triangles) and C1 (grey diamonds), (a) δ³⁰Si_Si(OH)₄, (b) Si(OH)₄ concentrations, (c) δ³⁰Si_SiO₂, and (d) bSiO₂ concentrations. The first two points for δ³⁰Si_Si(OH)₄ of A11 and A3 are values for merged samples. The horizontal dashed lines represent the limit of the different water masses.

Fig. 3. δ³⁰Si and Si distribution in mixed layer (a,b,e,f), Winter Water (c,g), and Upper Circumpolar Deep Water (d,h). The values are the mean of the different water masses (defined by Park et al. (2008a)) at each station. Caution has to be taken for the values extrapolated owing the poor sampling coverage. The bathymetry is scaled at 50 m for ML, 250 m for WW, and 600 m for UCDW.
Table 4
Average δ^{30}Si$_{Si(OH)4}$ and δ^{30}Si$_{SiO2}$ for different water masses of the Antarctic Zone (+/- 1 SD). ML: Mixed Layer; WW: Winter Water; UCDW: Upper Circumpolar Deep Water; LCDW: Lower Circumpolar Deep Water. See Fig. 1a for the locations of these studies. Except for AESOPS and SOFeX, the area averages and error bars were calculated based on the mean values for each station. For AESOPS and SOFeX, the area averages and error bars were calculated for the whole dataset south of APF.

<table>
<thead>
<tr>
<th></th>
<th>KEOPS</th>
<th>EFEPA</th>
<th>CLIVAR SR3</th>
<th>AESOPS</th>
<th>SOFeX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(OH)$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>1.0±0.2</td>
<td>1.2±0.2</td>
<td>1.5±0.4</td>
<td>1.4±0.2</td>
<td>1.0±0.1</td>
</tr>
<tr>
<td>WW</td>
<td>1.0±0.2</td>
<td>1.2±0.2</td>
<td>1.5±0.4</td>
<td>1.4±0.2</td>
<td>1.0±0.1</td>
</tr>
<tr>
<td>UCDW</td>
<td>1.0±0.2</td>
<td>1.2±0.2</td>
<td>1.5±0.4</td>
<td>1.4±0.2</td>
<td>1.0±0.1</td>
</tr>
<tr>
<td>LCDW</td>
<td>1.0±0.2</td>
<td>1.2±0.2</td>
<td>1.5±0.4</td>
<td>1.4±0.2</td>
<td>1.0±0.1</td>
</tr>
<tr>
<td>δ^{30}Si$_{SiO2}$ (‰)</td>
<td>0.3±0.2</td>
<td>0.4±0.2</td>
<td>0.6±0.2</td>
<td>0.4±0.2</td>
<td>0.4±0.2</td>
</tr>
</tbody>
</table>

δ^{30}Si$_{SiO2}$ values presented here were on the heavy side of the reported range for the AZ (Table 4). This reflects the fact that the growth season was already advanced during KEOPS, with maximal Si(OH)$_4$ depletion (Brzezinski et al., 2001; Quégueny and Brzezinski, 2002) and associated enrichment in heavy Si-isotopes of the particulate and dissolved Si-phases (Varela et al., 2004).

4. Discussion

4.1. General considerations

The fractionation of Si isotopes during biological production by diatoms can be described using simple closed or open system models (De la Rocha et al., 1997; Sigman et al., 1999). The Rayleigh model (or closed system model) assumes that nutrient consumption is not replenished by external sources and describes the evolution of the isotopic signatures of Si(OH)$_4$ (Eq. (1)), instantaneous bSiO$_2$ (Eq. (2)) and accumulated bSiO$_2$ (Eq. (3)):

$$\delta^{30}\text{Si}_{\text{Si(OH)4}} = \delta^{30}\text{Si}_{\text{Si(OH)4},\text{initial}} + 30\varepsilon \cdot \ln(f)$$ (1)

$$\delta^{30}\text{Si}_{\text{SiO2,inst}} = \delta^{30}\text{Si}_{\text{Si(OH)4}} + 30\varepsilon$$ (2)

$$\delta^{30}\text{Si}_{\text{SiO2,acc}} = \delta^{30}\text{Si}_{\text{Si(OH)4},\text{initial}} - 30\varepsilon \cdot \frac{f \ln(f)}{1-f}$$ (3)

In Eqs. (1) and (3), f is defined as:

$$f = \frac{[\text{Si(OH)4}]_{\text{observed}}}{[\text{Si(OH)4}]_{\text{initial}}}$$ (4)

The alternative to the Rayleigh model is the steady state, or open system model, where Si(OH)$_4$ is supplied and partially consumed. The supply of Si(OH)$_4$ equals the sum of gross biogenic silica production and loss of residual Si(OH)$_4$ by advection. The evolution of the isotopic signatures in such system is as follows:

$$\delta^{30}\text{Si}_{\text{Si(OH)4}} = \delta^{30}\text{Si}_{\text{Si(OH)4},\text{initial}} - 30\varepsilon \cdot (1-f)$$ (5)

$$\delta^{30}\text{Si}_{\text{SiO2}} = \delta^{30}\text{Si}_{\text{Si(OH)4},\text{initial}} + 30\varepsilon \cdot f = \delta^{30}\text{Si}_{\text{Si(OH)4}} + 30\varepsilon$$ (6)

$$\Delta^{30}\text{Si} = \delta^{30}\text{Si}_{\text{SiO2}} - \delta^{30}\text{Si}_{\text{Si(OH)4}}$$ (7)

$\Delta^{30}\text{Si}$ equals 30ε in case the open system mode applies, but also in case δ^{30}Si$_{SiO2}$ represents instantaneous bSiO$_2$ in the Rayleigh model approach (Eq. (2)). The implied absence of bSiO$_2$ accumulation in the steady state model represents an oversimplification of the true conditions, since the bSiO$_2$ pool likely consists of a mixture of detrital and living cells, especially toward the end of the productive period (Brzezinski et al., 2003; Beucher et al., 2004). The Rayleigh model only describes two extreme ideal situations: any bSiO$_2$ present is the result of an instantaneous production and will be exported from the system (Eq. (2)) or reflects accumulated, non-sinking bSiO$_2$ (Eq. (3)). Clearly, reality is lying in-between these two extremes.

The evolution of δ^{30}Si$_{Si(OH)4}$ vs. [Si(OH)$_4$], as described by the Rayleigh and steady state models, follows a curved or a straight line, respectively.

Demarest et al. (2009) report an isotopic fractionation ($30\varepsilon = -0.55\%$) associated with dissolution of bSiO$_2$. By increasing the euphotic bSiO$_2$ dissolution:production ratio (D/P), the resulting fractionation factor associated with Si uptake and dissolution would be as follows:

$$30\varepsilon_{\text{tot}} = 30\varepsilon_{\text{upt}} + \frac{D}{P} 30\varepsilon_{\text{diss}}$$ (8)
where \(^{30} \text{Si}_{\text{eq}} \) is the isotopic fractionation factor associated with bSiO\(_2\) production, and \(\delta_{\text{Si}} \) the one associated with bSiO\(_2\) dissolution. Although bSiO\(_2\) production and dissolution occur simultaneously in marine surface waters, for a given diatom cell these processes are uncoupled temporally since it is not until after diatom death and degradation of its protective organic coating that the diatom frustule starts to dissolve (Bidle and Azam, 1999). Such decoupling is not taken into account in Eq. (8) which assumes steady state with no bSiO\(_2\) accumulation. Additional studies that combine \(\delta^{30} \text{Si}_{\text{SiO}_2} \) analysis with measurements of bSiO\(_2\) production and dissolution rates have potential to reveal how the silicon isotope distribution is affected by the fractionation of silicon isotopes during bSiO\(_2\) dissolution (Demarest et al., 2009).

4.2. Estimation of the fractionation factor

In order to limit possible bias on local \(^{30} \text{Si} \) estimates due to intense mixing above the plateau and difficulties in selecting the appropriate Si-source (see Section 4.4) we only used the data for the HNLC off-plateau region to estimate \(^{30} \text{Si} \). A further reason for focusing on the HNLC area only is that here bSiO\(_2\):Si(OH)\(_4\) concentration ratios were much lower than in the fertilized bloom area (Tables 2 and 4) thereby reducing the possible impact of bSiO\(_2\) dissolution on the Si(OH)\(_4\) isotopic signal in the ML. Using the WW Si(OH)\(_4\) pool as the Si-source (cf. Section 4.3.1), we calculated \(\delta^{30} \text{Si} \) values of \(-1.0 \pm 0.3\%\) and \(-1.3 \pm 0.2\%\), for the Rayleigh and steady state models (Eqs. (1) and (5)), respectively, for the HNLC area.

To date, only four in situ studies have estimated the fractionation factor in the ACC, with following reported \(^{30} \text{Si} \) values: \(-1.5 \pm 0.3\%\) (Varela et al., 2004), \(-0.9 \pm 0.3\%\) (Cardinal et al., 2005), \(-1.3 \pm 0.4\%\) (Cardinal et al., 2007), and \(-1.4 \pm 0.1\%\) (Cavagna et al. in press). Our estimates are not significantly different from these literature values. The relatively large variability in the fractionation factor estimates probably results from the difficulty in accurately determining Si-source(s) and from the mixing of waters with silicic acid pools that have experienced different degrees of biological consumption (Cardinal et al., 2005; Reynolds et al., 2006; Beucher et al., 2008). The fractionation factor estimates reported in Cardinal et al. (2007) and Cavagna et al. (in press) actually represent apparent fractionations or \(\Delta^{30} \text{Si} \). Since \(\delta^{30} \text{Si}_{\text{SiO}_2} \) is set by processes which may not be contemporaneous with those setting \(\delta^{30} \text{Si}_{\text{Si(OH)}_4} \) (Cardinal et al., 2007; Demarest et al., 2009), we decided not to include these estimates when calculating an average \(^{30} \text{Si} \) for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant. The average \(^{30} \text{Si} \) value obtained for the ACC region, even though variations between different \(^{30} \text{Si} \) values were not significant.
4.3.2. Silicon mass balance

The KEOPS cruise took place during the senescent phase of the bloom, at the end of the growth season (Blain et al., 2007; Mosseri et al., 2008; Mongin et al., 2008). In the following section we therefore considered the summer ML conditions to reflect the conditions before overturning ended the stratification. This hypothesis is in agreement with the two repeat C11 stations showing no variation. ML and UCDW can thus be considered end-members, which will generate a homogenous layer in the upper 400 m constituting AASW as a result of convective mixing at the onset of winter (Park et al., 2008a). Fig. 4b shows it is the case since WW falls on a mixing curve between the HNLC-ML and UCDW waters calculated by the following equation:

\[
m_{\text{AASW}} \cdot \delta^{30}\text{Si}_{\text{AASW}} = m_{\text{UCDW}} \cdot \delta^{30}\text{Si}_{\text{UCDW}} + m_{\text{HNLC-ML}} \cdot \delta^{30}\text{Si}_{\text{HNLC-ML}}
\]

where \(m_{\text{UCDW}}\) and \(m_{\text{HNLC-ML}}\) represent the Si contributions of UCDW and HNLC-ML:

\[
m_{\text{AASW}} = m_{\text{UCDW}} + m_{\text{HNLC-ML}}
\]

and the relative UCDW Si contribution (\(f_{\text{UCDW}}\)) to AASW is defined as:

\[
f_{\text{UCDW}} = \frac{m_{\text{UCDW}}}{m_{\text{AASW}}}
\]

Combining Eqs. (9) and (11) gives:

\[
f_{\text{UCDW}} = \frac{\delta^{30}\text{Si}_{\text{AASW}} - \delta^{30}\text{Si}_{\text{HNLC-ML}}}{\delta^{30}\text{Si}_{\text{UCDW}} - \delta^{30}\text{Si}_{\text{HNLC-ML}}}
\]

Using Eq. (12) we estimated that the UCDW contributed 78 ± 12% of the \(\text{Si(OH)}_4\) standing stock of the HNLC AASW as a result of this mixing. Standard errors for the different mass balance estimations were obtained from Monte Carlo simulations (Normal distribution, \(n = 1000\)).

Integrating the observed WW \(\text{Si(OH)}_4\) concentration over the whole water layer between surface and WW (i.e., integrating over the 400 m AASW winter layer; Park et al., 2008a) and multiplying that amount with \(f_{\text{UCDW}}\), we obtain that UCDW contributes 16.0 ± 2.8 mol Si m\(^{-2}\) to AASW. The 100 m deep summer ML will thus inherit (100/400) \((16.0 ± 2.8)\) or 4.0 ± 0.7 mol Si m\(^{-2}\) yearly at the start of the growth season each overturning event (that is once per year). Assuming steady state conditions to apply (supply inherited (100/400) \((16.0 ± 2.8)\) or 4.0 ± 0.7 mol Si m\(^{-2}\) yr\(^{-1}\), which is 1.5 ± 0.7 mol Si m\(^{-2}\) yr\(^{-1}\) less than the annual net \(\text{SiO}_2\) production calculated above. Net \(\text{SiO}_2\) production should represent the sum of \(\Delta\text{Si} + \) vertical Si-supply + \(\Delta\text{Si}-\text{advection}\). Thus, the imbalance between seasonal \(\text{Si(OH)}_4\) depletion and net \(\text{SiO}_2\) production should equal the annual vertical UCDW Si-supply of 4.0 ± 0.7 mol Si m\(^{-2}\) yr\(^{-1}\).

The mass balance yielded a seasonal \(\text{Si(OH)}_4\) depletion \((\Delta\text{Si})\), difference between initial (= HNLC WW) and final ML \(\text{Si(OH)}_4\) concentration] integrated over the mixed layer (0–100 m) of 2.5 ± 0.2 mol Si m\(^{-2}\) yr\(^{-1}\), which is 1.5 ± 0.7 mol Si m\(^{-2}\) yr\(^{-1}\) less than the annual net \(\text{SiO}_2\) production calculated above. Net \(\text{SiO}_2\) production should represent the sum of \(\Delta\text{Si} + \) vertical Si-supply + \(\Delta\text{Si}-\text{advection}\). Thus, the imbalance between seasonal \(\text{Si(OH)}_4\) depletion and net \(\text{SiO}_2\) production should give an estimate of the summertime Si-supply, either vertically or horizontally by advection. Since (1) the ACC fronts delimit zones with relatively constant hydrological and biogeochemical properties (Tréguer and Jacques, 1992; Sokolov and Rintoul, 2007) and (2) water particles spend several years in each zone and therefore take part in several winter convective mixings (S. Speich, pers. comm. 2009), we can thus consider that a water parcel in the Antarctic Zone is surrounded by water with relatively similar properties and subject to the same seasonal evolution. It thus seems appropriate to construct mass and isotopic balances at an annual scale, using a simple 1-D approach. Since advective Si-supply can then be neglected, the imbalance between annual net \(\text{SiO}_2\) production (equal to the UCDW vertical supply) and seasonal depletion (i.e., 1.5 ± 0.7 mol Si m\(^{-2}\)) represents the summertime Si-supply via vertical turbulent diffusion processes. While we are confident that our mass balance description is valid for the AZ HNLC area, it appears not to be applicable for the productive Kerguelen Plateau waters surrounded by waters with relatively low productivity. For the plateau area, advection from the surrounding areas seems necessary to close mass and isotopic balances (see further below, Section 4.4.3).

Our estimated annual net \(\text{SiO}_2\) production values slightly exceed the range of published net \(\text{SiO}_2\) production values for the AZ (2.4 to 3.3 mol Si m\(^{-2}\) yr\(^{-1}\); Pondaven et al., 2000; Nelson et al., 2002; Pollard et al., 2006), but are not significantly different. Using an inverse modeling approach for nutrient distributions, Jin et al. (2006) estimated opal export out of the euphotic layer in the Indian sector of the Southern Ocean in the range of 1 to 7 mol Si m\(^{-2}\) yr\(^{-1}\), which encompasses our estimate of net \(\text{SiO}_2\) production. The presence of a productive spot east to the Kerguelen Plateau is recognized by Jin et al. (2006) and is confirmed by remote sensing chlorophyll data presented by Sokolov and Rintoul (2007). The latter authors report that most regions of elevated chlorophyll in the open Southern Ocean can be explained by upwelling of nutrients (both macro- and micro-nutrients) at sites where the ACC interacts with topography, followed by downstream advection. Recurrent blooms downstream of islands and bathymetric features as is the case for the Kerguelen area HNLC area (Fig. 1b) fit to this scenario.

4.4. Si-isotopic constraints in the plateau fertilized bloom area

4.4.1. Processes involved in the ML Si-isotopic balance

As discussed in Section 3.2, the plateau fertilized bloom area is defined with stations A3 and B1. In contrast to the HNLC area, estimates of the fractionation factor using the Rayleigh model (Eq. (1)) were unrealistically low (\(\delta^{18}\text{O} < -0.5\%\)) compared to published \(\delta^{18}\text{O}\) values, no matter what source and conditions were considered for the initial Si-pool (UCDW, WW on or off plateau). The ML \(\delta^{30}\text{Si}_{\text{SiO}_2}\) value was clearly off the Rayleigh trend (Fig. 5a), showing that Si-isotopic fractionation in the ML above the plateau could not be described with a closed system model. A high vertical nutrient supply due to high internal wave activity above the plateau is likely the reason for this situation (Park et al., 2008b).

However, the ML was very close to the steady state fractionation trend when taking HNLC WW as the Si-source instead of plateau WW (Fig. 5b). This suggests that there was significant ventilation of the plateau waters by AASW from the HNLC areas located southward, in agreement with a residence time of the water above the plateau of 4 to 9 months (Venchiariutti et al., 2008; Park et al., 2008a). Since the length of the growth season in this area is about 3 months (Mongin et al., 2008), significant renewal occurs over the plateau with water advected from the south (Park et al., 2008a). Thus the whole water mass above the plateau may have been significantly ventilated with AASW from the HNLC area over the time scale of the season. This condition could explain why HNLC WW represented a relevant source with appropriate initial Si-pool conditions for the plateau ML.

Although the near complete \(\text{Si(OH)}_4\) utilization in plateau surface waters should have resulted in \(\delta^{30}\text{Si}_{\text{SiO}_2}\) close to the initial \(\delta^{30}\text{Si}_{\text{Si(OH)}_4}\), value, the average \(\delta^{30}\text{Si}_{\text{SiO}_2}\) in the ML was +2.3 ± 0.1‰ (Table 4). This is significantly heavier than the initial \(\delta^{30}\text{Si}_{\text{Si(OH)}_4}\) values of +1.9‰ for (fertilized area WW) or +1.5‰ (for HNLC WW). \(\delta^{30}\text{Si}_{\text{SiO}_2}\) values exceeding \(\delta^{30}\text{Si}_{\text{Si(OH)}_4}\) of the Si-source have been reported earlier for strongly Si-depleted surface waters in the Antarctic Zone (Varela et al., 2004). Vertical mixing events can advect light Si-isotopes into the ML and therefore decreasing the difference between \(\text{Si(OH)}_4\) and \(\text{SiO}_2\) \(\delta^{30}\text{Si}\). However, such a process cannot explain why \(\text{SiO}_2\) isotopic composition is heavier than the source. \(\delta^{30}\text{Si}_{\text{SiO}_2}\) values exceeding those of silicate in source waters can actually fit a Rayleigh model where \(\text{SiO}_2\) is exported and ML \(\text{SiO}_2\) represents the
At B5 on the plateau the Δ^{30}Si value of -0.9% was not significantly different from the ACC 30Si value of $-1.2\pm0.2\%$. Si-depletion at B5 was not large enough to discern between the different fractionation model outputs (Fig. 5). Though a shift of the bloom toward B5 was observed at the end of KEOPS (Mongin et al., 2008), the bSiO_2:Si(OH)$_4$ ratio at B5 was 0.2 (compared to 1.5 \pm 0.6 for A3-1, A3-2, and B1), indicating that at B5 any isotopic effect due to dissolution of biogenic silica would not be significant enough to affect the larger Si(OH)$_4$ pool. Possible vertical mixing would have little impact on Δ^{30}Si at the B5 site, since the concentration difference between the surface and subsurface was small compared to A3.

4.4.2. Processes involved in the WW Si-isotopic balance

We observed gradients in WW Si(OH)$_4$ concentrations between plateau and off-plateau stations with margin stations showing intermediate characteristics (not shown). These gradients appeared to be controlled by isopycnal mixing of HNLC WW (typically; 52.5 μmol Si l$^{-1}$, δ^{30}SiSi(OH)$_4 = +1.9 \pm 0.1\%$; see Fig. 3c,g) with WW of altered composition present above the plateau (typically; 34.2 μmol Si l$^{-1}$, δ^{30}SiSi(OH)$_4 = +1.9 \pm 0.1\%$; see Fig. 3c,g). Two processes could explain the alteration of the plateau WW in summer:

1. Silicifying diatoms thriving below the plateau ML inducing a seasonal Si-depletion and δ^{30}SiSi(OH)$_4$ increase over the plateau WW. A deep bSiO_2 maximum was observed during the KEOPS cruise and was associated with a chlorophyll maximum (Mosserei et al., 2008; Uitz et al., 2009; Fig. 1b). The deep chlorophyll maximum is a recurrent feature in the Southern Ocean (e.g., Parslow et al., 2001; Holm-Hansen and Hewes, 2004), and several mechanisms are proposed to explain its formation (Cullen, 1982; Quéguiner et al., 1997; Parslow et al., 2001; Holm-Hansen and Hewes, 2004). For the KEOPS bloom area, Uitz et al. (2009) argue that the deep bSiO_2 maximum can be explained by the presence of a deep temperature driven pycnocline (well below the ML and the euphotic layer) and the sedimentation of living, though inactive, algal cells, of which the sinking rate was likely under environmental control. Brzezinski and Nelson (1989) report that diatoms can produce substantial amounts of bSiO_2 at depths where little or no photosynthesis is taking place. This is in agreement with numerous studies (cf. review by Martin-Jézéquel et al. (2000)) stating that energy implicated in the silification process is mainly of respiratory origin and therefore decoupled from photosynthesis. It is thus quite possible that the deep bSiO_2 maximum observed in plateau WW indeed consisted of silifying diatoms that settled out of the surface waters and accumulated at a second density gradient. Isotopic fractionation by such WW diatoms would thus placed plateau WW on a fractionation trend. Fig. 5b shows this is the case (either closed or open system fractionation trends could work) at least when HNLC WW is imposed as the original Si-source. The ML and WW at stations B5 and A11 also fell along the same fractionation trend (Fig. 5b). Si-utilization in the ML and WW at B5 was less than in the fertilized area. The observation that the bloom patch over time drifted from A3–B1 sites toward B5 (Mongin et al., 2008; Mosserei et al., 2008) supports the fact that the bloom was at a less developed stage at B5. Note that at A11 we also observed a large deep bSiO_2 maximum (6.3 μmol l$^{-1}$ at 150 m; Fig. 5d), indicating that WW might have also undergone seasonal Si uptake (Fig. 5b).

2. An alternative process that could have decreased the WW Si(OH)$_4$ concentration and increased the WW δ^{30}SiSi(OH)$_4$ is mixing between ML and WW. To test whether the observed Si concentrations and isotopic compositions could be explained by a mixing-only scenario we conducted a sensitivity analysis of the bloom area WW with the mixing line between the bloom area ML.

Fig. 5. δ^{30}SiSi(OH)$_4$ vs. [Si(OH)$_4$] for the different Si-pools in the fertilized (plateau) bloom area (±1 SD; stations A3 and B1) and for HNLC WW (stations B11 and C11): (a) plateau fractionation trends following the steady state (straight line) or Rayleigh (curve) models with fertilized WW as the Si-source and the average ACC fractionation factor (−1.2 ±0.2\%). (b) fractionation trends following the steady state (straight line) or Rayleigh (curve) model with HNLC WW as the Si-source and the average ACC fractionation factor (−12 ±0.2\%). Mixing lines with HNLC WW and fertilized ML (dashed line). An example of the mixing line between hypothetical fertilized ML and a WW having undergone Si uptake (dashed-dotted line) is given. The circles and triangles represent ML and WW respectively. The black empty symbols are for the fertilized area, the empty grey for A11, the filled grey for B5, and the filled black for HNLC area. The area averages and error bars were calculated based on the mean values for each station.
and HNLC WW. Fig. 5b clearly shows that bloom area WW does not fit on this mixing line, but fits well on the steady state fractionation line. Mixing lines with HNLC WW and ML for B5 and A11 also could not explain their WW Si characteristics.

This result confirms that Si uptake in the subsurface is largely the dominant process controlling Si(OH)₄ contents and isotopic composition of WW in the fertilized bloom area and also at stations A11 and B5. An example of mixing between the ML and WW, having undergone Si uptake is also shown in Fig. 5b. While the latter scenario cannot be rejected it appears difficult to verify and would require Si uptake in the subsurface.

4.4.3. Silicon mass balance

Using HNLC WW characteristics to represent the initial conditions (52.5 ± 3.3 mmol Si−1) of WW in the fertilized area, we estimate the seasonal depletion in the upper 100 m at 5.0 ± 0.3 mol Si m−2 yr−1. For the 100 to 400 m WW layer we calculate a seasonal depletion of 5.5 ± 1.1 mol Si m−2 yr−1 based on the WW Si(OH)₄ concentration differences between the HNLC and fertilized areas. As discussed in Section 4.3.2, the use of Si-depletion to estimate net bSiO₂ production in the ML probably led to an underestimation of the latter because of the continuous supply of silicic acid from deeper layers, which is particularly important above the plateau (Park et al., 2008b). However, this underestimation should be balanced by an overestimation of the net bSiO₂ production in the subsurface, as both estimates are biased by the same mixing process. Therefore, we were able to calculate the total net bSiO₂ production in the fertilized area, by summing our ML and WW estimates, at 10.5 ± 1.4 mol Si m−2 yr−1 (= ML seasonal depletion + WW seasonal depletion). However, a 1-D approach as used in Section 4.3.2 to calculate mass and isotopic balances could be biased for the fertilized area because of advection from the surrounding HNLC area. Compared to previous net bSiO₂ production estimations in the Antarctic Zone (2.4 to 3.3 mol Si m−2 yr−1; in Pondaven et al., 2000; Nelson et al., 2002; Pollard et al., 2006), we estimate that the Kerguelen Plateau sustained an extremely high integrated net bSiO₂ production (see also Mosseri et al., 2008) in the higher range of the opal export estimation for the Southern Ocean (Jin et al., 2006). Natural iron fertilization, as discussed in Mosseri et al. (2008), clearly boosts diatom productivity, as observed in artificial iron fertilization (de Baar et al., 2005; Cavagna et al., in press).

5. Conclusions

The silicon cycle at two contrasting areas was studied during the KEOPS expedition (Kerguelen Ocean and the Plateau compared Study) in the Antarctic Zone. We studied the HNLC area outside the Kerguelen Plateau and the natural iron-fertilized area above the plateau. The Si-isotopic data presented here allows for a better constraint of the silicon mass budget as it enabled the identification of the initial pre-bloom conditions and the different potential Si-pools involved. Seasonal Si uptake and export could then be calculated using mass and isotopic balances.

In the HNLC area, remnant WW represented the initial Si-pool of the summer ML. Si was supplied to the ML from a UCDW contribution (4.0 ± 0.7 mol Si m−2 yr−1), which should be balanced by annual net bSiO₂ production. However, the Si-depletion over the growth season obtained from a mass balance calculation was only 2.5 ± 0.2 mol Si m−2 yr−1, 1.5 ± 0.7 mol Si m−2 yr−1 lower than the UCDW supply. Since the seasonal Si-depletion does not take into account Si-supply during the stratification season, this difference could represent a mixing supply from below the mixed layer and suggests that the system operated more in open mode with significant Si-supply from WW.

In the natural iron-fertilized waters above the Kerguelen Plateau, the ML Si-isotopic signatures could not be reconstructed by Rayleigh (closed system) equations. This provides firm evidence of a Si-supply to the ML during the growth season. This is in accordance with physics, which shows that the Kerguelen Plateau is a highly dynamic system. HNLC WW represents the most likely Si-source and initial pre-bloom conditions. We estimated a net bSiO₂ production for the bloom area AASW at 10.5 ± 1.3 mol Si m−2 yr−1, with a significant contribution from diatom silification in the deep bSiO₂ maximum. In the fertilized area above the plateau surrounded by HNLC waters, the assumption that the system operates in 1-D mode when calculating mass and isotopic balances has to be taken with caution, since advection could be significant. Moreover, heavier δ30Si values compared to the Si-source (Winter Water) suggest that: (1) A significant part of the senescent bSiO₂ pool in the ML was probably already dissolved and/or (2) the system operates in a Rayleigh mode in the beginning of the Si-depletion (higher uptake/supply ratio), but significant supply (decreasing uptake/uptake ratio) at the end decreases the δ30Si significantly, without affecting the δ30Si values, when the surface Si(OH)₄ pool is strongly depleted. For the application of δ30Si proxy in palaeoceanography, the isotopic decoupling between bSiO₂ and Si(OH)₄ has significant implications. Process studies aiming at the full characterization of the Si-processes (i.e., assessment of uptake, dissolution, export; δ30Si signatures, actively bSi forming cells via PDPMO-labeling, dead/living cell ratios, ...) are necessary to better constrain the origin and fate of δ30Si in the water column.

Finally, using the off-plateau KEOPS δ30Si(HNLC), where the silicon mass balance was better constrained, along with previous studies in the ACC, we refined the ACC fractionation factor estimate (ε30) to −1.2 ± 0.2‰.

Acknowledgements

Our warm thanks go to the officers and crew of the R/V Marion DuFresne during the KEOPS program, as well as to S. Blain (chief scientist) and S. Jacquet for sampling. We are also grateful to J. De Jong and N. Mattielli for the management of the MC-ICP-MS laboratory at ULB and to L. Monin and N. Dahkani (RMCA) for their help in sample processing and to Warren Joubert (University of Cape Town) for improvement of English. This paper greatly benefited from the constructive reviews of two anonymous referees. This work was conducted within the BELCANTO III network (contracts SD/CA/03A of SPSDIII, Support Plan for Sustainable Development) funded by BELSPO, the Belgian Science Policy. Luc André thanks the FNRS for its financial support (FRFC project 2.4512.00).

References