Timing of continental building in the Sveconorwegian orogen, SW Scandinavia

Bernard Bingen, Øyvind Skår, Mogens Marker, Ellen M. O. Sigmond, Øystein Nordgulen, Jomar Ragnhildstveit, Joakim Mansfeld, Robert D. Tucker & Jean-Paul Liégeois

Bingen, B., Skår, Ø., Marker, M., Sigmond, E. M. O., Nordgulen, Ø., Ragnhildstveit, J., Mansfeld, J., Tucker, R. D. & Liégeois, J.-P.: Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. *Norwegian Journal of Geology*, Vol. 85, pp. 87-116. Trondheim 2005. ISSN 029-196X.

The timing of continental building in the Sveconorwegian orogen of SW Scandinavia is evaluated with zircon U-Pb geochronology. ID-TIMS, LA-ICPMS and SIMS data are reported for 21 samples of orthogneiss, metarhyolite and metasandstone in S Norway, with emphasis on the Suldal area. The Sveconorwegian orogen is divided into a reworked Fennoscandian 1.80-1.64 Ga parautochthonous segment, the Eastern Segment, and two allochthonous terranes. The Idefjorden terrane is interpreted as a composite 1.66-1.52 Ga arc formed at the margin or near the margin of Fennoscandia. The western terrane, including the Telemark, Hardangervidda, Suldal and Rogaland-Vest Agder sectors, is named Telemarkia. U-Pb zircon data indicate that Telemarkia was built during a short magmatic event between 1.52 and 1.48 Ga, and was located at the margin of a Palaeoproterozoic craton, possibly Fennoscandia. No basement older than 1.5 Ga can be positively identified. In the early stage of the Sveconorwegian orogeny, Telemarkia collided with the Idefjorden terrane. The Bamble-Kongsberg sector, characterized by a mixed lithology and 1.13-1.10 Ga early-Sveconorwegian high-grade metamorphism, is interpreted as the original collision zone between these terranes.

B. Bingen, Ø. Skår, M. Marker, E. M. O. Sigmond, Ø. Nordgulen, Geological Survey of Norway, NO-7491 Trondheim Norway (e-mail: bernard.bingen@ngu.no); J. Ragnhildstveit, Hordaland County Council, PO Box 7900, NO-5020 Bergen, Norway; J. Mansfeld, Department of Geology and Geochemistry, Stockholm University, SE-10691 Stockholm, Sweden; R. D. Tucker, Department of Earth and Planetary Sciences, Washington University, MO 63130, St. Louis, USA; J. –P. Liégeois, Musée royal de l'Afrique centrale, B-3080 Tervuren, Belgium.

Introduction

The Sveconorwegian orogen of SW Scandinavia represents a truncated and comparatively small segment of the global Grenvillian belt. The Sveconorwegian orogen results from a collision between Fennoscandia and an unknown craton at the end of the Mesoproterozoic (1.1-1.0 Ga). It consists of late-Palaeoproterozoic to Mesoproterozoic continental domains reworked during the Sveconorwegian orogeny and displaced along lithospheric-scale Sveconorwegian shear zones (Figs. 1, 2; Berthelsen 1980; Park et al. 1991; Gorbatschev & Bogdanova 1993; Romer 1996; Bingen et al. 2001a; Andersen et al. 2002b). Progress in the understanding of the Sveconorwegian orogeny, and more globally of the Grenvillian orogeny, requires large-scale evaluation of continental building in the different domains exposed in the orogen. In this paper, zircon U-Pb geochronological data are reported for 21 samples of magmatic and metasedimentary rocks in the previously poorly investigated western part of the Sveconorwegian orogen. These data are combined with published data (e.g. Åhäll et al. 2000; Söderlund et al. 2002; Andersen et al. 2004), to provide an overview of the main magmatic events embodied in the Sveconorwegian orogen. Available data lead to an improved geometric model for assembly of the Sveconorwegian orogen.

Sampling and analytical methods

Samples were collected along a broad E-W transect across the western part of the Sveconorwegian orogen in S Norway. These include metavolcanic, metaigneous and metasedimentary rocks from pre-Sveconorwegian supracrustal complexes and their possible basement (Figs. 3, 4, 5; Table 1). Publised maps of the sampled area are those of Sigmond (1975, 1998), Ragnhildstveit et al. (1998) and Nordgulen (1999). For one of the sampling sites, namely Skånevik, an improved local geological map is presented (See Fig. 5).

Zircon was separated for U-Pb geochronology using a water table, heavy liquids and a magnetic separator. Zircon from seven samples was analysed by isotope dilution - thermal ionisation mass spectrometry (ID-TIMS) in the laboratories of Washington University, St. Louis, following a method outlined by Tucker et al. (1999). The analyses were done on non-magnetic, clear, crystals, abraded before dissolution (Table 2). Zircon from four samples was analysed by secondary ion mass spectrometry (SIMS) using the CAMECA IMS 1270 instrument at the NORDSIM laboratory, Swedish Museum of Natural History, Stockholm (Tables 3, 4). Zircon from the ten remaining samples was analysed by laser ablation - inductively coupled plasma mass

Fig. 1. Situation map of SW Scandinavia with lithotectonic domains and shear zones used in this work.

spectrometry (LA-ICPMS) at the Geological Survey of Norway, Trondheim (Table 5). For the SIMS and LA-ICPMS analyses, 20 to 60 zircon crystals were mounted in epoxy and polished to approximately half thickness. Cathodoluminescence (CL) images were obtained with a scanning electron microscope of all crystals before U-Pb analysis (Fig. 6).

The SIMS analytical method, data reduction, error propagation and assessment of the results are outlined in Whitehouse et al. (1997, 1999). The analyses were conducted with a spot size of ca. 30 μ m, and calibrated to the Geostandard 91500 reference zircon with an age of 1065 Ma (Wiedenbeck et al. 1995). The error on the U/Pb ratio includes propagation of the error on the day-to-day calibration curve obtained by regular analysis of the reference zircon. A common Pb correction is applied using the ²⁰⁴Pb analysis.

The LA-ICPMS data were collected on a Finnigan ELEMENT1 single collector high-resolution sector ICPMS, alimented by a Finnigan 266 nm laser microsampler. The analytical method is summarized hereafter. After a pre-analysis cleaning ablation, one or two analyses are performed with a ca. 10-15 μ m laser beam rastered over an area of ca. 60 x 80 μ m over the crystal section (Fig. 6). The beam frequency is 10 Hz. The beam energy ranges from 0.1 to 1.0 mJ and is adjusted for every sample or standard to obtain a ²³⁸U signal around 2x10⁶ counts/sec. The aerosol is transported from the sample chamber in He gas, and

introduced in the plasma in a mixture of He and Ar gas. The data are acquired in a time-resolved counting scanning mode for 60 sec. Masses ²⁰²Hg, ²⁰⁴(Hg + Pb), ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th and ²³⁸U are measured. The interference between ²⁰⁴Pb and ²⁰⁴Hg contained in the Ar gas is corrected by monitoring ²⁰²Hg and assuming a ²⁰⁴Hg/²⁰²Hg ratio of 0.2293. A 60 sec gas blank analysis is performed between each zircon analysis. The measured isotope ratios are corrected for element- and mass-bias effects using the Geostandard 91500 reference zircon. One analysis of the standard is run after every five analyses of the unknown. The analytical setting provides an intensity for the ²⁰⁷Pb signal higher than 1.5x10⁴ counts/sec. Analyses during which the zircon crystal brake are discarded. A common Pb correction is applied using the ²⁰⁴Pb analysis. The data reduction is performed with help of an in-house developed program (Microsoft Excel spreadsheets and Visual Basic macros). Concentrations of U, Pb and Th are not derived from the data. Only element and isotope ratios are manipulated (Table 5). Concordia diagrams and age calculations are generated with the ISOPLOT program (Ludwig 2001). For the ten samples analysed in this study, upper intercept ages and weighted mean ²⁰⁷Pb/²⁰⁶Pb ages are statistically equivalent. We choose to quote the weighted mean ²⁰⁷Pb/²⁰⁶Pb ages in Table 1 and relevant figures. To monitor the accuracy of the LA-ICPMS method, zircon crystals from reference samples with compositions measured by ID-TIMS and ages ranging from Permian to Archaean are analysed together with the unknown samples. A summary of

Fig. 2. Geological sketchmap of SW Scandinavia showing the distribution of important Mesoproterozoic lithological units and late-Sveconorwegian plutonism, modified after Koistinen et al (2001).

intercept ages obtained during a period overlapping with data collection for this study (Table 6) indicates that the deviation between LA-ICPMS and ID-TIMS ages is around 0.5 %.

Geochronology of the Sveconorwegian orogen

The Sveconorwegian orogen corresponds to the portion of Scandinavia affected by the Sveconorwegian orogeny at the end of the Mesoproterozoic (Figs. 1, 2; Berthelsen 1980). The Western Gneiss Complex, representing a basement window in the Caledonides of western Norway, and Caledonian crystalline nappes of the Middle Allochthon affected by Sveconorwegian deformation are not discussed in this paper (Tucker et al. 1990; Bingen et al. 2001b; Skår & Pedersen 2003). Continental domains in the Sveconorwegian orogen are referred to as sectors, segments or terranes in the literature. We use the term terrane, in the sense recommended by the glossary of the American Geological Institute, i.e. a tectonically-bounded body of rock of regional extent, characterized by a geologic history different from that of contiguous terranes. The term has no connotation of an exotic origin, but suggests significant transport. In this context, we divide the Sveconorwegian orogen into one parautochthonous segment, the Eastern Segment, and two allochthonous terranes, the Idefjorden and Telemarkia terranes (Figs. 1, 2). As discussed later in this paper, Telemarkia consists of four sectors, namely the Telemark, Hardangervidda, Suldal and Rogaland-Vest Agder sectors. Internal divisions in the Rogaland-Vest Agder sector, as proposed by Duchesne et al. (1999), are not addressed in this paper. The Bamble-Kongsberg

Fig. 3. Geological sketchmap of S Norway with a summary of sampling and results.

sector is interpreted in this paper as an early-Sveconorwegian collision zone between Telemarkia and the Idefjorden terrane (Fig. 1) and is described separately.

Eastern Segment

The easternmost continental domain of the Sveconorwegian orogen is historically called the Eastern Segment and is bounded to the east by the Sveconorwegian Frontal Deformation Zone (Figs. 1, 2; Wahlgren et al. 1994). It mainly consists of 1.80-1.64 Ga deformed granitoids (Table 7; Fig. 7A; Connelly et al. 1996; Larson et al. 1999; Christoffel et al. 1999; Söderlund et al. 1999, 2002), and is characterized by a distinctive late-Sveconorwegian high-pressure metamorphic overprint dated at 0.97 Ga (Möller 1998; Möller 1999; Johansson et al. 2001). The orthogneisses bear evidence for at least one pre-Sveconorwegian amphibolite-facies metamorphic event, associated with partial melting and leading to formation of metamorphic zircon in the 1.46-1.42 Ga interval (Christoffel et al. 1999; Söderlund

et al. 2002). A minor volume of 1.40-1.38 Ga, 1.25-1.20 Ga granite plutonism is recorded (Table 7, Fig. 7A).

Idefjorden terrane

The Idefjorden terrane extends across the Phanerozoic Oslo rift. It is bounded by the Mylonite Zone to the east and by the Östfold-Marstrand and Åmot-Vardefjell Shear Zones to the west (Figs. 1, 2; Åhäll et al. 1998; Bingen et al. 2001a). An amphibolite-rich, banded paragneiss complex limits the terrane along the Åmot-Vardefjell Shear Zones. The terrane comprises greenschist- to amphibolite-facies tholeiitic to calcalkaline magmatic suites and metagreywacke sequences (Åhäll et al. 1998; Brewer et al. 1998; Åhäll et al. 2000). Metavolcanic rocks include the 1643 \pm 29 Ma Horred formation, 1614 \pm 7 Ma Åmål formation, and 1615 \pm 31 Ma Slemmestad metarhyolite (Table 8; Lundqvist & Skiöld 1993; Åhäll et al. 1995; Brewer et al. 1998; Andersen et al. 2004). Metaplutonic suites range in age from 1.62 to 1.52 Ga (Table 8; Fig. 7B; Connelly & Åhäll

Fig. 4. Geological sketchmap of the Sauda-Suldal area with a summary of sampling and results. Map following Sigmond (1975).

1996; Brewer et al. 1998; Åhäll et al. 2000; Scherstén et al. 2000; Andersen et al. 2004; Nordgulen & Skår 2004). Geochronological data on two plutonic complexes situated west of the Oslo rift, are reported in Tables 1-2. These are the Vinflomyra granite gneiss giving an age of 1606

 \pm 2 Ma (sample N95-95, Figs. 3, 8A) and the Follum metapluton giving an age of 1555 \pm 3 Ma (sample N95-130, Figs. 3, 8B). The Follum metapluton forms a foliated boudin parallel to the regional NW-SE structural trend. It ranges in composition from diorite to tonalite

and has a low-K calc-alkaline signature typical of a primitive volcanic arc (Bingen et al. 2004). The voluminous Stora Le-Marstrand formation and correlative formations in Norway are made up of metagreywacke associated with mafic metavolcanic and plutonic rocks deposited at or after 1.58 Ga (Fig. 2; Åhäll et al. 1998; Bingen et al. 2001a). Two types of detrital zircon age distribution are recorded in the greywacke-dominated metasediments (Åhäll et al. 1998; Mansfeld & Andersen 1999; Bingen et al. 2001a; Andersen et al. 2004). One type is broad with modes between 2.0 and 1.55 Ga. The other type, recorded in turbidite sequences, is narrow with a mode between 1.66 and 1.53 Ga.

The Idefjorden terrane displays a specific plutonic suite at 1.34-1.32 Ga (Cornell & Austin Hegardt 2004), a poorly dated granite suite at 1.25-1.20 Ga, metasupracrustal rocks of the Dal group and late-Sveconorwegian 0.96-0.92 Ga granite plutons (Table 8, Fig. 7B).

Bamble-Kongsberg sector

The Bamble-Kongsberg sector forms a slightly warped belt between the Telemark sector and the Idefjorden terrane. It consists of amphibolite- to granulite-facies para- and orthogneiss complexes showing a strongly oriented SW-NE (Bamble) to N-S (Kongsberg) structural pattern (Starmer 1985). The sector is characterized by a distinctive early-Sveconorwegian 1.13-1.10 Ga high-grade metamorphism (Kullerud & Dahlgren 1993; Cosca et al. 1998). The oldest dated orthogneisses range in age between 1.57 and 1.52 Ga and show calc-alkaline signatures similar to coeval suites in the Idefjorden terrane (Table 9; Fig. 7C; Kullerud & Dahlgren 1993; Andersen et al. 2002b; Andersen et al. 2004). Younger orthogneisses are also reported. These include a 1500 \pm 5 Ma granodiorite gneiss (the Veldstad gneiss fringing the Modum metasedimentary complex; sample N95-66; Tables 1, 2; Figs. 3, 8C) and a 1.46 Ga orthogneiss in Bamble (the Nelaug gneiss associated with Selås banded gneiss; de Haas et al. 2002). Two main

types of metasedimentary complex are exposed. The first type commonly shows a banding parallel to regional structures and consists of metagreywacke-metapelite associated with amphibolite and felsic orthogneisses (Kongsberg complex, Selås Banded gneiss, Hisøy-Torungen complex; Starmer 1985; Knudsen et al. 1997, de Haas et al. 1999; 2002). The second type is dominated by quartzite and contains distinctive sillimanite-rich gneiss, orthoamphibole-cordierite gneiss, and calc-silicate gneiss (Modum, Kragerø and Nidelva complexes; Starmer 1985). Detrital zircon data constrain deposition of the metagreywacke-metapelite complexes in Bamble to be younger than 1.45 and 1.38 Ga (2 samples) and the quartzite complexes to be younger than 1.47 Ga (3 samples; Knudsen et al. 1997; Åhäll et al. 1998; de Haas et al. 1999; Bingen et al. 2001a). The Bamble-Kongsberg sector displays gabbro and granitoid metaplutons intruded between 1.20 and 1.15 Ga and late-Sveconorwegian granite plutons formed between 1.00 and 0.92 Ga (Table 9, Fig. 7C).

Telemark sector

The Telemark sector occurs to the west of the Åmot-Vardefjell and Saggrenda-Sokna shear zones and to the north-west of the Kristiansand-Porsgrunn shear zone (Figs. 1, 2). It consists of a large, greenschist- to epidoteamphibolite-facies supracrustal sequence with a total thickness exceeding 10 km, surrounded by amphibolitefacies gneiss complexes. In the low-grade region of central Telemark, stratigraphic relations and primary depositional structures are largely preserved (Dons 1960). The supracrustal sequence divides into three main packages, namely the 1.51 Ga Rjukan group, the Vindeggen group and an upper package coeval or younger than 1.17 Ga (Dahlgren et al. 1990b; Laajoki et al. 2002; Bingen et al. 2003; Andersen & Laajoki 2003). At the bottom of the sequence, the voluminous Rjukan group consists of felsic metavolcanic rocks (Tuddal fm), locally showing evidence for extrusive modes of deposition. The unconformably overlying Vindeggen

Fig. 5. Geological map of the coastal area in Skånevik, with sampling site.

group starts with mafic metavolcanic rocks (Vemork fm) interlayered with arkoses (Heddersvatnet fm), followed by a sequence dominated by fluviatile and shallow marine quartzite (Gausta fm) (Andersen & Laajoki 2003).

A ca. 1510 Ma metarhyolite and a 1500 \pm 2 Ma crosscutting dyke constrain deposition of the Rjukan group south of the town of Rjukan (Dahlgren et al. 1990b). To the north of Rjukan, a right-way up, weakly deformed section exposed in the Uvdal area, provides a crystallization age of 1512 +10/-8 Ma for a megacrystic metarhyolite (sample S93-305; Tables 1, 2; Figs. 3, 8D). The Rjukan group is spatially associated with plutonic rocks (commonly gradual change in grain size between the two types of rocks). Two foliated plutons yield intrusion ages of 1509 +19/-3 Ma (Table 10; Grotte suite; Ragnhildstveit et al. 1994) and 1476 \pm 13 Ma (Tinn granite; Andersen et al. 2002c). Deformation and metamorphic grade progressively increase towards the base of the Rjukan group. As a result, the nature of the base of the group is uncertain. The amphibolite-facies Gøyst metasupracrustal complex was regarded as a possible basement to the Rjukan group by Sigmond et al. (1997). However, detrital zircons in a sample collected in a bedded metasandstone sequence in this complex in the Uvdal area define a ²⁰⁷Pb/²⁰⁶Pb age relative probability curve with a main mode at 1508 \pm 10 Ma (7 out of 20 crystals) and minor modes at 1.98, 1.83, 1.80, 1.75, 1.63 Ga (sample B98-43; Tables 1, 3; Figs. 3, 9A). The 1508 \pm 10 Ma mode demonstrates that the sediment was partly sourced in a catchment coeval to the Rjukan group and thus can not represent a basement to this group. The sediments in the Gøyst complex are coeval or younger than 1.51 Ga and consequently are either a part of the Rjukan group or are younger. They possibly correlate with the Heddersvatnet formation situated in the lower part of the overlying Vindeggen group. In the Gol area, the Rjukan group grades into a gneiss complex. A sample of orthogneiss from this complex yields an intrusion age of 1492 ± 3 Ma (sample N95-112, Table 1, 2, Figs. 3, 8E), which is slightly younger that the Rjukan group. Along the Åmot-Vardefjell shear zone limiting the Telemark sector to the NE, the Hallingdal gneiss and quartzite complex is exposed (Fig. 3). A quartzite sample from this complex contains detrital zircons ranging from 3.13 to 1.71 Ga (Bingen et al. 2001a). The data indicate that this complex was deposited after 1.71 Ga and thus may represent a basement to the 1.51 Ga Rjukan group. A depositional age younger than 1.51 Ga is nevertheless possible.

The Telemark sector displays a voluminous continental 1.19-1.13 Ga bimodal plutonic and volcanic suite associated with clastic sediments (Fig. 2; Laajoki et al. 2002; Bingen et al. 2003). This suite is overlain by a cover of sediments younger than 1.12 Ga. The sector also contains a 1.03 Ga granodiorite suite and late-Sveconorwegian granite plutons (Table 10).

Fig. 6. (A) Cathodoluminescence image of zircon 01 of sample B00-140, showing a typical oscillatory zoning of magmatic origin. (B) Optical image of the same crystal after analysis, showing the size of a typical ablation pit. (C) Concordia diagram showing the two analyses from this pit.

Fig. 7. Relative probability curves for magmatic events in the four main continental domains exposed in the Sveconorwegian orogen. (A) Eastern Segment, (B) Idefjorden terrane, (C) Bamble-Kongsberg sector and (D) Telemark, Hardangervidda, Suldal and Rogaland-Vest Agder sectors merged into one terrane called Telemarkia. The curves are based on dates from Tables 1, 7-10.

Fig. 9. Concordia diagrams presenting SIMS U-Pb data on zircon from 4 samples.

Hardangervidda sector

The Hardangervidda sector is exposed on the Hardangervidda plateau to the west of the N-S trending Mandal-Ustaoset fault and shear zone (Figs. 1, 2). It consists of an amphibolite-facies gneiss domain with a generally E-W structural pattern (Sigmond 1998). Orthogneisses are interlayered with metasedimentary rocks. The geochronology of these rocks is poorly established. One granite gneiss yields a poor upper intercept age of 1649 +33/-19 Ma (Mårsbrot granite gneiss; Table 10; Ragnhildstveit et al. 1994). Two samples of quartzofeldspathic gneiss analysed by Birkeland et al. (1997) and Sigmond et al. (2000) yield bi- or multimodal zircon age distributions that are difficult to interpret in terms of a single intrusion age. We suggest that these two samples represent paragneiss units. Detrital zircons in two samples of metasediment (Hettefjord and Festningsnut groups) range in age between 3.25 and 1.54 Ga. They constrain deposition of the sedimentary rocks to be younger than 1.54 Ga and attest to the presence of an active Palaeoproterozoic to Archaean catchment area during the Mesoproterozoic (Bingen et al. 2001a).

Suldal sector

To the southwest of the Hardangervidda plateau, the crust is made up of alternating orthogneiss and metasupracrustal complexes characterized by a SE-NW structural pattern and greenschist- to epidote-amphibolite-facies metamorphism (Sigmond 1978, 1998; Torske 1982). We use the name Suldal sector for this domain.

In the Ullensvang area (Fig. 3), supracrustal rocks of the Ullensvang group comprise, in stratigraphic ascending order, andesitic to dacitic metatuff (Kinsarvik fm), metarhyolite with minor metabasalt (Jåstad fm), quartzite (Aga fm), conglomerate (Jonstein fm), and carbonatebearing micaschist and metaarkose (Vendevatn fm) (Torske 1982). A fine-grained (50-100 μ m) platy metarhyolite of the Jåstad formation yields an extrusion age of 1489 \pm 1 Ma (sample S93-338; Tables 1, 2; Figs. 3, 8F). This age constrains deposition of the lower part of the Ullensvang group. The base of the Ullensvang group is not defined as the supracrustal rocks show increased deformation and grade into a gneiss complex to the southwest (Torske 1982). An augen gneiss sample

Fig. 10. Concordia diagrams presenting LA-ICP-MS data on zircon from 10 samples.

from a highly deformed section (strong lineation and foliation parallel to regional NW-SE structural pattern, occurrence of 1-10 m layers of amphibolite parallel to foliation) in the Røldal valley yields an age of 1495 ± 13 Ma for magmatic activity in this gneiss complex (sample B00-127; Tables 1, 5; Figs. 3, 10A). This age confirms a previous date of 1480 ± 60 Ma based on a whole-rock Rb-Sr errorchron for protolith formation in the Røldal valley (Berg 1977).

In the Skånevik area (Fig. 5; Mortensen 1942), a thin belt of weakly deformed metavolcanic rocks ranges in composition from basalt to andesite to rhyolite. The metavolcanic rocks are interlayered with metastandstone, metatuffite, metaconglomerate and metagabbro. A sample of a weakly deformed fine-grained (50-100 μ m) metarhyolite flow in the centre of the belt provides an extrusion age of 1491 ± 5 Ma (sample J-482A; Tables 1, 4; Fig. 9B). Along strike, in the Sauda-Suldal area (Fig. 4), a supracrustal belt is made up of intensely deformed, fine-grained rocks interpreted as metavolcanic rocks interlayered with subordinate metaplutonic rocks

(Sigmond 1978). The rocks commonly have an intermediate andesite-dacite composition. The best estimate for the timing of magmatic activity in the Sauda supracrustals is provided by an augen gneiss layer giving an age of 1496 ± 11 Ma (sample B00-106; Tables 1, 5; Fig. 10B) and a weakly-deformed granodiorite gneiss boudin giving an age of 1497 \pm 12 Ma (samples B00-145; Tables 1, 5; Fig. 10C). The supracrustal rocks exposed in Suldal are coeval to marginally older than the ones exposed in Sauda. An intensely deformed (strong lineation) granodioritic gneiss interlayered with metarhyolite provides an age of 1519 \pm 12 Ma (sample B00-140; Tables 1, 5; Fig. 10D). The gneiss complex surrounding the supracrustal rocks consists of variably deformed granodiorite to granite gneiss (Fig. 4). The gneiss complex and the supracrustal rocks are conformable. Fine-grained rocks interpretable as metavolcanic rocks are common in the gneiss complex. Three samples of this gneiss complex, namely an augen gneiss (sample B00-137), a weakly deformed K-feldspar megacrystic granite gneiss (sample B00-112) and a weakly deformed granodiorite (sample B00-139), provide overlapping intrusion ages

of 1501 \pm 11 Ma, 1516 \pm 11 Ma and 1506 \pm 13 Ma (Tables 1, 5; Fig. 10E-G). A sample from a more than 5 km-wide unit of weakly deformed to massive granite, showing a gradual contact to the gneiss complex (increasing fabric toward the contact) and showing plutonic textures in the centre of the unit, gives a similar age of 1499 ± 11 Ma (samples B00-149; Tables 1, 5; Fig. 10H). A sample of weakly deformed granite in the Ølen area, west of Sauda, yields an intrusion age of 1506 \pm 2 Ma (sample R94-66, Tables 1, 2, Figs. 3, 8G). Two additional samples define imprecise Sveconorwegian intrusion ages of 1065 \pm 74 and 1018 \pm 33 Ma (samples B00-147 and B00-144; Tables 1, 5; Figs. 10I, J). These two samples contain zircon xenocrysts with ages of 1508 \pm 32 and 1494 ± 33 Ma. One of these (B00-147) is a leucocratic garnet-bearing rock collected in an inhomogeneous outcrop in the gneiss complex, and probably corresponds to a granitic melt of local origin. Although imprecise, the two Sveconorwegian dates on foliated units demonstrate that the main regional NW-SE trending structural pattern in the Suldal-Sauda area is Sveconorwegian in age, in accordance with conclusions by Stein & Bingen (2002).

In the Bykle-Nesflaten area (Fig. 3), the Grjotdokki-Nesflaten supracrustal rocks are dominated by finegrained rocks of intermediate composition, interpreted as metaandesite-dacite (Sigmond 1978). These rocks are spatially associated and interlayered with metabasalt, metarhyolite and metaconglomerate. The common banding of the supracrustal rocks and stretching of the conglomerate attest to important deformation. Zircon was not successfully recovered from a metadacite sample. Two samples of granodiorite and granite gneiss with augen texture were collected in the directly surrounding and conformable Botsvatn gneiss complex in the Bykle area. One of the two samples is a layer in a highly sheared banded gneiss (Fig. 11). The two samples yield ages of 1498 \pm 8 Ma and 1499 \pm 12 Ma (samples B02-022 and B02-027; Tables 1, 4; Figs. 9C, D). They provide an estimate for the timing of plutonic activity in the gneiss complex.

The Suldal sector displays a 1.27-1.21 Ga bimodal volcanic suite associated with metasediments (Sæsvatn-Valldal supracrustal sequence; Table 10; Bingen et al. 2002; Brewer et al. 2004). This supracrustal sequence overlies discordantly the 1.50 Ga Røldal gneiss complex. The Suldal sector also displays large, massive, late-Sveconorwegian granite plutons.

Rogaland-Vest Agder sector

At the southwestern end of the Sveconorwegian orogen, the intensity of Sveconorwegian metamorphism increases progressively, reaching granulite-facies in the vicinity of the Rogaland anorthosite complex (Tobi et

Fig. 11. Site of sample B02027 in the Botsvatn gneiss complex surrounding the Grjotdokki-Nesflaten supracrustals in the Bykle area. The outcrop is made of a highly sheared banded gneiss, with common boudinaged coarse-grained leucosomes parallel to or cutting the foliation. The sequence contains abundant fine-grained intermediate to mafic layers of possible volcanic origin. Felsic layers commonly contain cm-scale K-feldspar megacrysts, clearly linking them to a plutonic or sub-volcanic protolith. Sample B02027, is collected from the ca. 1.5 m thick layer of granite gneiss with a linear augen texture in the centre of the photo (collected in front of and away from field of view). This sample provides an estimate of 1499 \pm 12 Ma for plutonic activity in the Botsvatn gneiss complex. The lithologies in the sampled section of the Botsvatn gneiss complex are similar to lithologies recorded in the nearby Grjotdokki-Nesflaten supracrustal rocks, except for the presence of a much larger volume of leucosome in the gneiss complex. The data available today are consistent with a nearcoeval character for the Grjotdokki-Nesflaten metavolcanic rocks, although they do not demonstrate it. Representation of the Grjotdokki-Nesflaten supracrustals as 1.52-1.48 Ga rocks in Figs. 2-3 is thus a speculative extrapolation. The deformation recorded in this outcrop is regarded Sveconorwegian in age by the first author of this publication, though this interpretation requires demonstration.

al. 1985; Bingen & van Breemen 1998b; Möller et al. 2002). This amphibolite- to granulite-facies gneiss domain, called the Rogaland-Vest Agder sector, displays a SE-NW to N-S structural pattern. It consists of felsic orthogneisses and subordinate volumes of anatectic garnet-bearing gneiss, quartzite and mafic gneiss (Falkum 1985; Tobi et al. 1985). Few pre-Sveco-norwegian U-Pb dates are recorded (Table 10). Available data include a poorly defined upper intercept age of 1.49 Ga for a granite gneiss (Pasteels & Michot 1975), and relic zircon cores at 1.58, 1.51 and 1.50 Ga in granulites (Möller et al. 2002, 2003).

The Rogaland-Vest Agder sector displays a significant magmatic suite at 1.18-1.15 Ga and voluminous Sveconorwegian plutonism between 1.05 and 0.92 Ga (Table 10). Late-Sveconorwegian plutonism includes the 0.93 Ga Rogaland anorthosite complex (Schärer et al. 1996).

Discussion

Timing of continental building

Figure 7 and Tables 1, 7-10 summarize available U-Pb dates on magmatic events in the Sveconorwegian orogen. The oldest cluster of peaks in the relative probability curve defines the main period of continental building in each domain (Fig. 7).

In the Eastern Segment, continental building took place between 1.80 and 1.64 Ga with a main magmatic pulse between 1.70 and 1.64 Ga (Fig. 7; Table 7). This magmatism largely overlaps the formation of the second and third phases of the Transscandinavian Igneous Belt, representing the foreland of the Sveconorwegian orogen (Åhäll & Larson 2000; Andersson et al. 2004). Consequently, the Eastern Segment is interpreted as a part of the Transscandinavian Igneous Belt that was underthrust, reworked and exhumed during the Sveconorwegian orogeny (Christoffel et al. 1999; Söderlund et al. 1999, 2002).

In the Idefjorden terrane, continental building is recorded between 1.66 and 1.52 Ga (Figs. 2, 7; Table 8). The geochemical and isotopic signatures of magmatic suites are typical for active margin settings (Brewer et al. 1998; Hageskov & Mørch 2000; Andersen et al. 2004). Magmatic rocks with a juvenile, low-K tholeiitic geochemical signature indicate that at least part of the Idefjorden terrane formed in a volcanic arc outboard of the Palaeoproterozoic continent, possibly in front of a back-arc basin (Åhäll et al. 1998; Brewer et al. 1998; Bingen et al. 2001a; Bingen et al. 2004). The occurrence of turbidite sequences with a narrow 1.66-1.53 Ga provenance age restricted to the volcanic arc, is consistent with this interpretation. Nevertheless, clastic zircons in

Fig. 12. Two possible models for terrane assembly at the onset of the Sveconorwegian orogeny. One model features Telemarkia attached to an unknown craton (exotic Telemarkia) and the other to Fennoscandia (indigenous Telemarkia). Colour coding follows Fig. 1. See text for more explanations. After 1.10 Ga, oblique (sinistral) convergence (1.10-0.97 Ga) and final extension (0.97-0.92 Ga) produced the final geometry pictured in Fig. 1. The Eastern Segment is not pictured in the model as it developed at the end of the Sveconorwegian orogeny by underthrusting of the Fennoscandia basement.

the 2.0-1.55 Ga range recorded in some metasediment samples suggest a continental margin setting with sources in the volcanic arc itself and in an evolved Palaeoproterozoic continent, probably Fennoscandia, behind the arc (Andersen et al. 2004). The Idefjorden terrane is interpreted as a composite and increasingly mature arc formed between 1.66 and 1.52 Ga at the margin or near the margin of Fennoscandia (Andersen et al. 2004; Nordgulen & Skår 2004). Formation of the Idefjorden terrane included accretion of juvenile oceanic arcs to the continent between 1.66 and 1.52 Ga. As argued by Cornell and Austin Hegardt (2004), no magmatic suite overlaps between the Idefjorden terrane and the Eastern Segment. The Idefjorden terrane can thus be alternatively interpreted as an exotic terrane assembled on Fennoscandia during the Sveconorwegian orogeny.

In the western part of the orogen, in the Telemark, Hardangervidda, Suldal and Rogaland-Vest Agder sectors, the main Mesoproterozoic magmatic event occurred during a comparatively short time interval between 1.52 and 1.48 Ga (Figs. 2, 7; Tables 1, 10). This event corresponds to a major continental growth event involving formation of widespread volcanic and plutonic complexes. Crust older than 1.52 Ga is not positively identified, although a ca. 1.8-1.7 Ga isotopic reservoir is allowed for by isotopic data on magmatic rocks (T_{DM} Nd and Hf model ages) (Menuge & Brewer 1996; Andersen et al. 2001; Andersen et al. 2002b). The geotectonic setting of 1.52-1.48 Ga continental building is uncertain. In the Suldal sector, preliminary geochemical data on abundant andesite-dacite and granodiorite lithologies suggest an active continental margin setting. In the Telemark sector, the bimodal character of volcanism (Tuddal fm vs. Vemork fm) and the A-type geochemical signature of the Rjukan group metarhyolite suggest a continental "within-plate" setting (Menuge & Brewer 1996; Sigmond et al. 1997). Differences in the style of magmatic suites thus suggest that continental building and reworking took place in different settings around 1.5 Ga in the different sectors and that the sectors were affected by relative motion after 1.5 Ga. The tight 1.52-1.48 Ga time interval for continental building in the west of the Sveconorwegian orogen nevertheless indicates that the Telemark, Hardangervidda, Suldal and Rogaland-Vest Agder sectors were geographically and genetically linked from the start and were part of a single piece of continent at the onset of the Sveconorwegian orogeny. We propose the name Telemarkia for this piece of continent. The widespread occurrence of Palaeoproterozoic and Archaean detrital zircons in sediment sequences associated with, or covering, the 1.52-1.48 Ga supracrustals implies that Telemarkia was situated in the vicinity or at the margin of an evolved craton during the Mesoproterozoic. Isotopic arguments (Andersen et al. 2001; Andersen et al. 2002b) and provenance analysis of detrital zircons (Knudsen et al. 1997; de Haas et al. 1999; Bingen et al. 2001a) are compatible with restoration of Telemarkia at the margin of Fennoscandia. Such a restoration is consistent with a simple geographic polarity for the 1.52-1.48 Ga magmatism at a presumed western active margin of Fennoscandia around 1.5 Ga. From the margin to the continent, this polarity is calc-alkaline magmatism in the westernmost Suldal sector, bimodal continental magmatism in the Telemark sector and 1.53-1.50 Ga rapakivi granite plutonism in the interior of the Fennoscandian craton (Ragunda suite in Sweden) (Åhäll et al. 2000; Bingen et al. 2001a). An origin of Telemarkia at the margin of an exotic craton is nevertheless permissible.

The Bamble-Kongsberg sector contains lithologies characteristic of both Telemarkia and the Idefjorden terrane (Figs. 2, 7; Tables 1, 9-10). The Bamble-Kongsberg

sector shares with the Idefjorden terrane the 1.57-1.52 Ga calc-alkaline suite associated with greywacke metasediments (Andersen et al. 2004). It shares with Telemarkia 1.52-1.46 Ga granite plutonism, Mesoproterozoic quartzite-dominated platform sediment sequences and the 1.17-1.15 Ga suite of A-type granite-charnockite plutonism (Bingen et al. 2001a; Bingen et al. 2003). We interpret the Bamble-Kongsberg sector as an early-Sveconorwegian collision zone (1.13-1.10 Ga) between Telemarkia and the Idefjorden terrane.

Sveconorwegian assembly

The Sveconorwegian orogeny corresponds to the collision between Fennoscandia and an unknown craton at the end of the Mesoproterozoic. The Sveconorwegian orogen has a total width of ca. 500 km, including a ca. 100 km wide zone of reworking of cratonic Fennoscandia (Eastern Segment). An orogenic belt of this size can only be the product of a collision involving a major cratonic indenter. The Sveconorwegian orogeny includes assembly and imbrication of the terranes exposed in the orogen between 1.13 and 0.97 Ga. Telemarkia is the westernmost coherent continental domain exposed in the orogen (Figs. 1, 2). Two distinct assembly models are sketched in Fig. 12. One sketch features Telemarkia at the margin of Fennoscandia before the Sveconorwegian orogeny (indigenous Telemarkia), the other at the margin of another craton, not exposed in the orogen (exotic Telemarkia). In both models the Idefjorden terrane is part of the margin of Fennoscandia and the Bamble-Kongsberg sector is regarded as the original collision zone between Telemarkia and the Idefjorden terrane. The main reasons for this interpretation are as follows. (1) The Bamble-Kongsberg sector was affected by the earliest recorded Sveconorwegian metamorphic overprint, namely, the 1.13-1.10 Ga medium pressure amphiboliteto granulite-facies overprint (Kullerud & Dahlgren 1993; Cosca et al. 1998; de Haas et al. 2002). (2) The Bamble-Kongsberg sector contains the youngest recorded undisputable Mesoproterozoic volcanic arc magmatic suite, namely, the 1.20-1.18 Ga tholeiitic gabbro to tonalite Tromøy suite (Knudsen & Andersen 1999; Andersen et al. 2004). This suite attests to the preservation of an oceanic volcanic arc in the middle of the orogen, and suggests closure of an ocean basin between Telemarkia and the Idefjorden terrane. (3) As argued earlier, the Bamble-Kongsberg sector contains lithologies characteristic of both the Idefjorden terrane and Telemark sector and can thus be considered as a mixture of rocks of different origins (Fig. 2). In both models of Fig. 12, convergence between Telemarkia and the Idefjorden terrane before 1.14 Ga is accommodated by subduction of oceanic floor below the Idefjorden terrane. The 1.19-1.13 Ga association of continental bimodal magmatism and sediments in Telemarkia indicates that Telemarkia was affected by continental

extension (Basin and Range-type extension; Bingen et al. 2003) before the collision event. The structures and geometry along the Telemark-Bamble boundary are compatible with early-Sveconorwegian thrusting of the Bamble-Kongsberg sector over the Telemark sector (Starmer 1985; Andersson et al. 1996; Henderson & Ihlen 2004; Ebbing et al. subm). The cover of clastic sediments younger than 1.12 Ga over the Telemark sector, namely the Heddal group and Eidsborg formation (de Haas et al. 1999; Laajoki et al. 2002; Bingen et al. 2003) can be interpreted as an early-Sveconorwegian foreland basin related to formation of the Bamble-Kongsberg collision zone.

After 1.10 Ga, Sveconorwegian deformation propagated towards the foreland and hinterland to accommodate oblique (sinistral) convergence (Hageskov 1985; Park et al. 1991; Stephens et al. 1996). Telemarkia was affected by major deformation during this period. A detailed account of Sveconorwegian tectonics is beyond the scope of this paper. The last undisputable evidence for convergence in the orogen is provided by 972 \pm 14 Ma eclogite-facies metamorphism in the Eastern Segment (Möller 1998; Johansson et al. 2001).

Both models proposed in Fig. 12 are permissible. The first model restoring Telemarkia to the margin of an exotic craton before the Sveconorwegian orogeny implies a collision event lasting 160 m.y. The second model restoring Telemarkia to the margin of Fennoscandia features two collisions with closure of an oceanic basin: a first collision between Telemarkia and the Idefjorden terrane (at 1.13-1.10 Ga) and a second collision between an exotic craton and Telemarkia (after 1.10 Ga). In that case, the second Sveconorwegian suture would lie offshore to the west or southwest of Rogaland.

Conclusions

Zircon U-Pb geochronological data presented in this study demonstrate that the main continental building event in the westernmost exposed domain in the Sveconorwegian orogen, namely the Telemark, Hardangervidda, Suldal and Rogaland-Vest Agder sectors, took place during a short time interval between 1.52 and 1.48 Ga. This result suggests that these sectors are genetically linked and part of the same continent at the onset of the Sveconorwegian orogeny. The name Telemarkia is proposed for this piece of continent. The Sveconorwegian orogeny can be pictured as polyphase imbrication of crust at the margin of Fennoscandia between 1.13 and 0.97 Ga, as a result of a collision involving Fennoscandia, Telemarkia and unknown exotic craton. The Bamble-Kongsberg sector is interpreted as an early-Sveconorwegian collision zone between Telemarkia and the Idefjorden terrane.

Acknowledgements: SIMS data were produced at the NORDSIM laboratory, operated and financed under an agreement between the research councils of Denmark, Norway, and Sweden, the Geological Survey of Finland, and the Swedish Museum of Natural History. L. Ilynsky, K. Lindén and M. Whitehouse are thanked for guidance at the NORDSIM laboratory. LA-ICP-MS data were obtained at the laboratory of the Geological Survey of Norway, with the collaboration of B. Davidsen. S. Dahlgren and W.J. Davis are thanked for providing reference zircons from the Larvik district and Slave Province respectively, together with related U-Pb data. H. Schiellerup and T. Slagstad are thanked for constructive review. This is NORDSIM publication #110.

References

- Alm, E., Sundblad, K. & Schöberg, H. 2002: Geochemistry and age of two orthogneisses in the Proterozoic Mjøsa-Vänern ore district, southwestern Scandinavia. *GFF 124*, 45-61.
- Andersen, T. 1997: Radiogenic isotope systematics of the Herefoss granite, South Norway: an indicator of Sveconorwegian (Grenvillian) crustal evolution in the Baltic shield. *Chemical Geology* 135, 139-158.
- Andersen, T., Andresen, A. & Sylvester, A.G. 2001: Nature and distribution of deep crustal reservoirs in the southwestern part of the Baltic Shield: evidence from Nd, Sr and Pb isotope data on late Sveconorwegian granites. *Journal of the Geological Society, London* 158, 253-267.
- Andersen, T., Andresen, A. & Sylvester, A.G. 2002a: Timing of late- to post-tectonic Sveconorwegian granitic magmatism in South Norway. *Norges geologiske undersøkelse Bulletin 440*, 5-18.
- Andersen, T., Griffin, W.L. & Pearson, N.J. 2002b: Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. *Journal of Petrology* 43, 1725-1747.
- Andersen, T., Sylvester, A.G. & Andresen, A. 2002c: Age and petrogenesis of the Tinn granite, Telemark, South Norway, and its geochemical relationship to metarhyolite of the Rjukan group. *Norges geologiske undersøkelse Bulletin 440*, 19-26.
- Andersen, T. & Laajoki, K. 2003: Provenance characteristics of Mesoproterozoic metasedimentary rocks from Telemark, South Norway: a Nd-isotope mass-balance model. *Precambrian Research* 126, 95-122.
- Andersen, T., Griffin, W.L., Jackson, S.E., Knudsen, T.-L. & Pearson, N.J. 2004: Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic shield. *Lithos* 73, 289-318.
- Andersson, J., Söderlund, U., Cornell, D., Johansson, L. & Möller, C. 1999: Sveconorwegian (-Grenvillian) deformation, metamorphism and leucosome formation in SW Sweden, SW Baltic Shield: constraints from a Mesoproterozoic granite intrusion. *Precambrian Research* 98, 151-171.
- Andersson, J., Möller, C. & Johansson, L. 2002: Zircon chronology of migmatite gneisses along the Mylonite Zone (S Sweden): a major Sveconorwegian terrane boundary in the Baltic Shield. *Precambrian Research 114*, 121-147.
- Andersson, M., Lie, J.E. & Husebye, E.S. 1996: Tectonic setting of post-orogenic granites within SW Fennoscandia based on deep seismic and gravity data. *Terra Nova 8*, 558-566.
- Andersson, U.B., Sjöström, H., Högdahl, K. & Eklund, O. 2004: Transscandinavian Igneous Belt; evolutionary models. In Högdahl, K., Andersson, U.B. & Eklund, O. (eds.), The Transscandinavian Igneous Belt (TIB) in Sweden; a review of its character and evolution, 37, 103-110. Geological Survey of Finland, Special Paper 37, Espoo.
- Ask, R. 1996: Single zircon evaporation Pb-Pb ages from the Vaggeryd syenite and dolerites in the SE part of the Sveconorwegian orogen, Småland, S Sweden. *GFF 118*, A8.
- Berg, Ø. 1977: En geokronologisk analyse av prekambrisk basement i

distriktet Røldal-Haukelisæter-Valldalen ved Rb-Sr whole-rock metoden, dets plass i den sørvestnorske Prekambriske Provinsen, og en vurdering av denne provinsen i lys av det generelle geokronologiske mønster i det Nord-Atlantiske Prekambriske området *Mineralogisk Geologisk Museum*, 125, Oslo.

- Berthelsen, A. 1980: Towards a palinspastic tectonic analysis of the Baltic Shield. In Cogne, J. & Slansky, M. (eds.): Geology of Europe, from Precambrian to the post-Hercyninan sedimentary basins, 108, 5-21. Mémoires du B.R.G.M., Paris.
- Bingen, B. & van Breemen, O. 1998a: Tectonic regimes and terrane boundaries in the high-grade Sveconorwegian belt of SW Norway, inferred from U-Pb zircon geochronology and geochemical signature of augen gneiss suites. *Journal of the Geological Society*, *London 155*, 143-154.
- Bingen, B. & van Breemen, O. 1998b: U-Pb monazite ages in amphibolite- to granulite-facies orthogneisses reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. *Contributions to Mineralogy and Petrology 132*, 336-353.
- Bingen, B., Birkeland, A., Nordgulen, Ø. & Sigmond, E.M.O. 2001a: Correlation of supracrustal sequences and origin of terranes in the Sveconorwegian orogen of SW Scandinavia: SIMS data on zircon in clastic metasediments. *Precambrian Research 108*, 293-318.
- Bingen, B., Davis, W.J. & Austrheim, H. 2001b: Zircon U-Pb geochronology in the Bergen Arc eclogites and their Proterozoic protoliths, and implications for the pre-Scandian evolution of the Caledonides in western Norway. *Geological Society of America Bulletin 113*, 640-649.
- Bingen, B., Mansfeld, J., Sigmond, E.M.O. & Stein, H.J. 2002: Baltica-Laurentia link during the Mesoproterozoic: 1.27 Ga development of continental basins in the Sveconorwegian Orogen, southern Norway. *Canadian Journal of Earth Sciences* 39, 1425-1440.
- Bingen, B., Nordgulen, Ø., Sigmond, E.M.O., Tucker, R.D., Mansfeld, J. & Högdahl, K. 2003: Relations between 1.19-1.13 Ga continental magmatism, sedimentation and metamorphism, Sveconorwegian province, S Norway. *Precambrian Research* 124, 215-241.
- Bingen, B., Liégeois, J.-P., Hamilton, M.A., Nordgulen, Ø. & Tucker, R.D. 2004: 1.55 Ga oceanic volcanic arc magmatism and associated sedimentation west of the Oslo rift, S Norway: implications for Gothian geology. *GFF 126*, 19.
- Birkeland, A., Sigmond, E.M.O., Whitehouse, M.J. & Vestin, J. 1997: From Archaean to Proterozoic on Hardangervidda, South Norway. Norges geologiske undersøkelse Bulletin 433, 4-5.
- Brewer, T.S., Daly, J.S. & Åhäll, K.-I. 1998: Contrasting magmatic arcs in the Palaeoproterozoic of the south-western Baltic Shield. *Precambrian Research* 92, 297-315.
- Brewer, T.S., Åhäll, K.-I., Menuge, J.F., Storey, C.D. & Parrish, R.R. 2004: Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurring pre-Sveconorwegian continental margin tectonism. *Precambrian Research* 134, 249-273.
- Baadsgaard, H., Chaplin, C. & Griffin, W.L. 1984: Geochronology of the Gloserheia pegmatite, Froland, southern Norway. Norsk Geologisk Tidsskrift 64, 111-119.
- Christoffel, C.A., Connelly, J.N. & Åhäll, K.-I. 1999: Timing and characterization of recurrent pre-Sveconorwegian metamorphism and deformation in the Varberg-Halmstad region of SW Sweden. *Precambrian Research 98*, 173-195.
- Claeson, D.T. 1999: Geochronology of the Rymmen gabbro, southern Sweden; implications for primary versus inherited zircon in mafic rocks and rheomorphic dykes. *GFF* 121, 25-31.
- Connelly, J.N., Berglund, J. & Larson, S.Å. 1996: Thermotectonic evolution of the Eastern Segment of southwestern Sweden: tectonic constraints from U-Pb geochronology. *In Brewer*, T.S. (ed.), *Precambrian crustal evolution in the North Atlantic Region*, 112, 297-313. Geological Society of London, Special Publications.
- Connelly, J.N. & Åhäll, K.-I. 1996: The Mesoproterozoic cratonization of Baltica - new age constraints from SW Sweden. *In* Brewer, T.S.

(ed.), *Precambrian crustal evolution in the North Atlantic Region*, 112, 261-273. Geological Society of London, Special Publications.

- Cornell, D.H. & Austin Hegardt, E. 2004: Abstract. When, where and how did the Sveconorwegian terranes of Sweden meet? *GFF 126*, 20.
- Cosca, M.A., Mezger, K. & Essene, E.J. 1998: The Baltica-Laurentia connection: Sveconorwegian (Grenvillian) metamorphism, cooling, and unroofing in the Bamble Sector, Norway. *The Journal of Geology* 106, 539-552.
- Dahlgren, S., Heaman, L. & Krogh, T. 1990a: Precise U-Pb zircon and baddeleyite age of the Hesjåbutind gabbro, central Telemark area, Southern Norway. *Geonytt 17*, 38.
- Dahlgren, S., Heaman, L. & Krogh, T. 1990b: Geological evolution and U-Pb geochronology of the Proterozoic Central Telemark area, Norway. *Geonytt* 17, 38-39.
- Davis, W.J. & Peterson, T. 1998: New geochronological results for the Tavani area (55K), eastern Kaminak greenstone belt, district of Keewatin, Northwest Territories. *Radiogenic age and isotopic studies:* report 11; Geological Survey of Canada, Current research 1998-F, 81-88.
- de Haas, G.J.L.M., Andersen, T. & Vestin, J. 1999: Detrital zircon geochronology: new evidence for an old model for accretion of the SW Baltic Shield. *The Journal of Geology 107*, 569-586.
- de Haas, G.J.L.M., Nijland, T.G., Andersen, T. & Corfu, F. 2002: New constraints on the timing of deposition and metamorphism in the Bamble sector, south Norway: zircon and titanite U-Pb data from the Nelaug area. *GFF 124*, 73-78.
- Dons, J.A. 1960: Telemark supracrustals and associated rocks. *In* Holtedahl, O., (ed.), *Geology of Norway 208*, 49-58. Norges geologiske undersøkelse.
- Duchesne, J.-C., Liégeois, J.-P., Vander Auwera, J. & Longhi, J. 1999: The crustal tongue melting model and the origin of massive anorthosites. *Terra Nova 11*, 100-105.
- Ebbing, J., Afework, Y., Olesen, O. & Nordgulen, Ø. subm: Is there evidence for magmatic underplating beneath the Oslo rift? *Terra Nova*.
- Eliasson, T. & Schöberg, H. 1991: U-Pb dating of the post-kinematic Sveconorwegian (Grenvillian) Bohus granite, SW Sweden: evidence of restitic zircon. *Precambrian Research* 51, 337-350.
- Falkum, T. 1985: Geotectonic evolution of southern Scandinavia in light of a late-Proterozoic plate-collision. *In* Tobi, A.C. & Touret, J.L. (eds.), *The deep Proterozoic crust in the north Atlantic provinces*, NATO-ASI C158, 309-322. Reidel, Dordrecht.
- Gorbatschev, R. & Bogdanova, S. 1993: Frontiers in the Baltic Shield. *Precambrian Research* 64, 3-21.
- Hageskov, B. 1985: Constrictional deformation of the Koster dyke swarm in a ductile sinistral shear zone, Koster islands, SW Sweden. *Bulletin of the Geological Society of Denmark 34*, 151-197.
- Hageskov, B. & Mørch, B. 2000: Adakitic high-Al trondhjemites in the Proterozoic Østfold-Marstrand Belt, W Sweden. *Bulletin of the Geological Society of Denmark 46*, 165-174.
- Hansen, B.T. & Lindh, A. 1991: U-Pb zircon age of the Görbjörnarp syenite in Skåne, southern Sweden. Geologiska Föreningens i Stockholm Förhandlingar 113, 335-337.
- Heaman, L.M. & Smalley, P.C. 1994: A U-Pb study of the Morkheia Complex and associated gneisses, south Norway: implications for disturbed Rb-Sr systems and for the temporal evolution of Mesoproterozoic magmatism in Laurentia. *Geochimica et Cosmochimica Acta* 58, 1899-1911.
- Heim, M., Skiöld, T. & Wolff, F.C. 1996: Geology, geochemistry and age of the 'Tricolor' granite and some other Proterozoic (TIB) granitoids at Trysil, southeast Norway. *Norsk Geologisk Tidsskrift* 76, 45-54.
- Hellström, F.A., Johansson, Å. & Larson, S.Å. 2004: Age emplacement of late Sveconorwegian monzogabbroic dykes, SW Sweden. *Precambrian Research 128*, 39-55.
- Henderson, I.H.C. & Ihlen, P.M. 2004: Emplacement of polygene-

ration pegmatites in relation to Sveconorwegian contractional tectonics: examples from southern Norway. *Precambrian Research* 133, 207-222.

- Jarl, L.-G. & Johansson, Å. 1988: U-Pb zircon ages of granitoids from Småland-Värmland granite-porphyry belt, southern and central Sweden. *Geologiska Föreningens i Stockholm Förhandlingar 110*, 21-28.
- Jarl, L.-G. 2002: U-Pb zircon ages from the Vaggeryd syenite and the adjacent Hagshult granite, southern Sweden. GFF 124, 211-216.
- Johansson, L., Möller, C. & Söderlund, U. 2001: Geochronology of eclogite facies metamorphism in the Sveconorwegian Province of SW Sweden. *Precambrian Research 106*, 261-275.
- Johansson, Å. 1990: Age of the Önnestad syenite and some gneissic granites along the southern part of the Protogine Zone, southern Sweden. *In* Gower, C.F., Rivers, T. & Ryan, B. (eds.), *Mid-Proterozoic Laurentia-Baltica*, 38, 131-148. Geological Association of Canada, Special Paper 38.
- Johansson, Å., Meier, M., Oberli, F. & Wikman, H. 1993: The early evolution of the Southwest Swedish Gneiss Province: geochronological and isotopic evidence from southernmost Sweden. *Precambrian Research* 64, 361-388.
- Kiel, H.M., Cornell, D.H. & Whitehouse, M.J. 2003: Age and emplacement conditions of the Chalmers mafic intrusion deduced from contact melts. *GFF 125*, 213-220.
- Knudsen, T.-L., Andersen, T., Whitehouse, M.J. & Vestin, J. 1997: Detrital zircon ages from southern Norway - implications for the Proterozoic evolution of the southwestern Baltic Shield. *Contributions to Mineralogy and Petrology* 130, 47-58.
- Knudsen, T.-L. & Andersen, T. 1999: Petrology and geochemistry of the Tromøy gneiss complex, South Norway, an alleged example of Proterozoic depleted lower continental crust. *Journal of Petrology* 40, 909-933.
- Koistinen, T., Stephens, M.B., Bogatchev, V., Nordgulen, Ø., Wennerström, M. & Korhonen, J. 2001: Geological map of the Fennoscandian shield, Scale 1:2000000. Geological Surveys of Finland, Norway and Sweden and the North-West Department of Natural Resources of Russia.
- Kullerud, L. & Machado, N. 1991: End of a controversy: U-Pb geochronological evidence for significant Grenvillian activity in the Bamble area, Norway. *Terra Abstracts, supplement to Terra Nova 3*, 504.
- Kullerud, L. & Dahlgren, S.H. 1993: Sm-Nd geochronology of Sveconorwegian granulite facies mineral assemblages in the Bamble shear belt, south Norway. *Precambrian Research* 64, 389-402.
- Larson, S.Å., Cornell, D.H. & Armstrong, R.A. 1999: Emplacement ages and metamorphic overprinting of granitoids in the Sveconorwegian Province in Värmland, Sweden - an ion probe study. *Norsk Geologisk Tidsskrift 79*, 87-96.
- Lindh, A., Schöberg, H. & Annertz, K. 1994: Disturbed radiometric ages and their bearing on interregional correlations in the SW Baltic Shield. *Lithos 31*, 65-79.
- Lindh, A. 1996: The age of the Hinneryd granite its significance for interpreting the terranes of the southern Baltic Shield. *GFF 118*, 163-168.
- Ludwig, K.R. 1980: Calculation of U-Pb isotopic data. *Earth and Planetary Science Letters* 46, 212-220.
- Ludwig, K.R. 2001: Users manual for Isoplot/Ex version 2.49, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 1a, Berkley.
- Lundqvist, I. & Skiöld, T. 1993: U-Pb zircon dating of volcanic rocks of the Åmål Group, western Sweden. *In* Lundqvist, T. (ed.), *Radiometric dating results*, C823, 24-30. Sveriges Geologiska Undersökning, Uppsala.
- Lundqvist, T. & Persson, P.-O. 1999: Geochronology of porphyries and related rocks in northern and western Dalarna, south-central Sweden. *GFF 121*, 307-322.

Laajoki, K., Corfu, F. & Andersen, T. 2002: Lithostratigraphy and U-Pb

geochronology of the Telemark supracrustals in the Bandak-Sauland area, Telemark, South Norway. *Norwegian Journal of Geology 82*, 119-138.

- Mansfeld, J. & Andersen, T. 1999: Formation of new crust in Scandinavia between 1.75 and 1.55 Ga, as evident from the Gothian units of the Østfold-Akershus sector, SE Norway. *Journal of Conference Abstracts* 4 (1), 137.
- Mansfeld, J. 2000: 200 m.y. of episodic crustal growth in the Østfold-Akershus sector, SE Norway 24 Nordiske Geologiske Vintermøte, 6-9 Jan 2000, 115. Norwegian Geological Society, Geonytt, Trondheim.
- Menuge, J.F. & Brewer, T.S. 1996: Mesoproterozoic anorogenic magmatism in southern Norway. *In Brewer*, T.S. (ed.), *Precambrian crustal evolution in the North Atlantic Region*. Geological Society, London, Special Publications, 112, 275-295.
- Mortensen, O. 1942: Et eruptivfelt i Kvinnherad og Skånevik herreder. Bergens Museum Årbok, Naturvitenskapelig rekke 1942, Nr. 8, 1-100.
- Möller, A., O'Brien, P.J., Kennedy, A. & Kröner, A. 2002: Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. *Journal of Metamorphic Geology 20*, 727-740.
- Möller, A., O'Brien, P.J., Kennedy, A. & Kröner, A. 2003: Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). *In* Vance, D., Müller, W. & Villa, I.M., (eds.), *Geochronology: linking the isotopic record with petrology and textures.* Geological Society of London, Special Publications, 220, 65-81.
- Möller, C. 1998: Decompressed eclogites in the Sveconorwegian (-Grenvillian) orogen of SW Sweden: petrology and tectonic implications. *Journal of Metamorphic Geology 16*, 641-656.
- Möller, C. 1999: Sapphirine in SW Sweden: a record of Sveconorwegian (-Grenvillian) late-orogenic tectonic exhumation. *Journal of Metamorphic Geology 17*, 127-141.
- Nordgulen, Ø., Tucker, R.D., Sundvoll, B., Solli, A., Nissen, A.L., Zwaan, K.B., Birkeland, A. & Sigmond, E.M.O. 1997: Palaeo- to Mesoproterozoic intrusive rocks in the area between Numedal and Mjøsa, SE Norway. *In* Nordgulen, Ø., Padget, P., Robinson, P. & McEnroe, S. (eds.), *Copena Conference*, 97.131, 69-70. Norges geologiske undersøkelse, Trondheim.
- Nordgulen, Ø. 1999: Geologisk kart over Norge, berggrunnskart Hamar, 1:250000. Norges geologiske undersøkelse.
- Nordgulen, Ø. & Skår, Ø. 2004: Mesoproterozoic crustal evolution of the Idefjorden terrane: U-Pb age determination of granitoids using LA-ICPMS analyses of zircon. *GFF 126*, 31-32.
- O'Nions, R.K. & Baadsgaard, H. 1971: A radiometric study of polymetamorphism in the Bamble region, Norway. *Contributions* to *Mineralogy and Petrology* 34, 1-21.
- Park, R.G., Åhäll, K.-I. & Boland, M.P. 1991: The Sveconorwegian shear-zone network of SW Sweden in relation to mid-Proterozoic plate movements. *Precambrian Research* 49, 245-260.
- Pasteels, P. & Michot, J. 1975: Geochronologic investigation of the metamorphic terrain of southwestern Norway. Norsk Geologisk Tidsskrift 55, 111-134.
- Pasteels, P., Demaiffe, D. & Michot, J. 1979: U-Pb and Rb-Sr geochronology of the eastern part of the south Rogaland igneous complex, southern Norway. *Lithos 12*, 199-208.
- Pedersen, S. & Konnerup-Madsen, J. 2000: Geology of the Setesdalen area, South Norway: implications for the Sveconorwegian evolution of South Norway. Bulletin of the Geological Society of Denmark 46, 181-201.
- Persson, P.-O., Wahlgren, C.-H. & Hansen, B.T. 1983: U-Pb ages of Proterozoic metaplutonics in the gneiss complex of southern Värmland, south-western Sweden. *Geologiska Föreningens i Stockholm Förhandlingar 105*, 1-8.
- Persson, P.-O., Lindh, A., Schöberg, H., Hansen, B.T. & Lagerblad, B. 1995: A comparison of the geochronology and geochemistry of

plagioclase-dominated granitoids across a major terrane boundary in the SW Baltic Shield. *Precambrian Research* 74, 57-72.

- Piontek, J.E., Connelly, J.N. & Åhäll, K.-I. 1998: 1.3 Ga anorogenic magmatism in Southwest Sweden. Abstracts with programs. Geological Society of America 30:7, 293.
- Ragnhildstveit, J., Sigmond, E.M.O. & Tucker, R.D. 1994: Early Proterozoic supracrustal rocks west of the Mandal-Ustaoset fault zone, Hardangervidda, South Norway. *Terra Nova Abstract Supplement 2*, 15-16.
- Ragnhildstveit, J., Naterstad, J., Jorde, K. & Egeland, B. 1998: Geologisk kart over Norge, berggrunnskart Haugesund, 1:250000. Norges geologiske undersøkelse, Trondheim.
- Romer, R.L. 1996: Contiguous Laurentia and Baltica before the Grenvillian-Sveconorwegian orogeny? *Terra Nova 8*, 173-181.
- Romer, R.L. & Smeds, S.-A. 1996: U-Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden. *Precambrian Research* 76, 15-30.
- Scherstén, A., Årebäck, H., Cornell, D., Hoskin, P., Åberg, A. & Armstrong, R. 2000: Dating mafic-ultramafic intrusions by ionmicroprobing contact-melt zircon: examples from SW Sweden. *Contributions to Mineralogy and Petrology 139*, 115-125.
- Scherstén, A., Larson, S.Å., Cornell, D.H. & Stigh, J. 2004: Ion probe dating of a migmatite in SW Sweden: the fate of zircon in crustal processes. *Precambrian Research 130*, 251-266.
- Schärer, U., Wilmart, E. & Duchesne, J.-C. 1996: The short duration and anorogenic character of anorthosite magmatism: U-Pb dating of the Rogaland complex, Norway. *Earth and Planetary Science Letters* 139, 335-350.
- Sigmond, E.M.O. 1975: Geologisk kart over Norge, berggrunnskart Sauda, 1:250000. Norges geologiske undersøkelse, Trondheim.
- Sigmond, E.M.O. 1978: Beskrivelse til det berggrunnsgeologiske kartbladet Sauda 1:250000. *Norges geologiske undersøkelse Bulletin 341*, 1-94.
- Sigmond, E.M.O., Gjelle, S. & Solli, A. 1997: The Rjukan Proterozoic rift basin, its basement and cover, volcanic and sedimentary infill, and associated intrusions. *Norges geologiske undersøkelse Bulletin* 433, 6-7.
- Sigmond, E.M.O. 1998: Geologisk kart over Norge, berggrunnskart Odda, 1:250000. Norges geologiske undersøkelse, Trondheim.
- Sigmond, E.M.O., Birkeland, A. & Bingen, B. 2000: A possible basement to the Mesoproterozoic quartzites on Hardangervidda, South-central Norway: zircon U-Pb geochronology of a migmatitic gneiss. Norges geologiske undersøkelse Bulletin 437, 25-32.
- Skår, Ø. 2002: U-Pb geochronology and geochemistry of early-Proterozoic rocks of the tectonic basement windows in central Nordland, Caledonides of north-central Norway. *Precambrian Research* 116, 265-283.
- Skår, Ø. & Pedersen, R.B. 2003: Relations between granitoid magmatism and migmatization: U-Pb geochronological evidences from the Western Gneiss Complex, Norway. *Journal of the Geological Society, London 160*, 935-946.
- Stacey, J.S. & Kramers, J.D. 1975: Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth and Planetary Science Letters 26*, 207-221.
- Starmer, I.C. 1985: The evolution of the south Norwegian Proterozoic as revealed by the major and mega-tectonics of the Kongsberg and Bamble sector. *In* Tobi, A.C. & Touret, J.L. (eds.): *The deep Proterozoic crust in the north Altantic provinces*, NATO-ASI C158, 259-290. Reidel, Dordrecht.
- Stein, H.J. & Bingen, B. 2002: 1.05-1.01 Ga Sveconorwegian metamorphism and deformation of the supracrustal sequence at Sæsvatn, South Norway: Re-Os dating of Cu-Mo mineral occurrences. *In* Blundell, D., Neubauer, F. & von Quadt, A. (eds.), *The timing and location of major ore deposits in an evolving orogen*. Geological Society, London, Special Publications 204, 319-335.

Stephens, M.B., Wahlgren, C.H., Weijermars, R. & Cruden, A.R. 1996:

Left lateral transpressive deformation and its tectonic implications, Sveconorwegian Orogen, Baltic Shield, Southwestern Sweden. *Precambrian Research* 79, 261-279.

- Söderlund, P., Söderlund, U., Möller, C., Gorbatschev, R. & Rodhe, A. 2004: Petrology and ion microprobe U-Pb chronology applied to a metabasic intrusion in southern Sweden: a study on zircon formation during metamorphism and deformation. *Tectonics 23*, TC5005, doi:10.1029/2003TC001498.
- Söderlund, U. 1996: Conventional U-Pb dating versus single-grain Pb evaporation dating of complex zircons from a pegmatite in the high-grade gneisses of southwestern Sweden. *Lithos 38*, 93-105.
- Söderlund, U., Jarl, L.-G., Persson, P.-O., Stephens, M.B. & Wahlgren, C.-H. 1999: Protolith ages and timing of deformation in the eastern, marginal part of the Sveconorwegian orogen, southwestern Sweden. *Precambrian Research* 94, 29-48.
- Söderlund, U., Möller, C., Andersson, J., Johansson, L. & Whitehouse, M.J. 2002: Zircon geochronology in polymetamorphic gneisses in the Sveconorwgian orogen, SW Sweden: ion microprobe evidence for 1.46-1.42 Ga and 0.98-0.96 Ga reworking. *Precambrian Research* 113, 193-225.
- Tobi, A.C., Hermans, G.A., Maijer, C. & Jansen, J.B.H. 1985: Metamorphic zoning in the high-grade Proterozoic of Rogaland-Vest Agder, SW Norway. In Tobi, A.C. & Touret, J.L. (eds.): The deep Proterozoic crust in the north Atlantic provinces, NATO-ASI C158, 477-497. Reidel, Dordrecht.
- Torske, T. 1982: Structural effects on the Proterozoic Ullensvang Group (West Norway) relatable to forceful emplacement of expanding plutons. *Geologische Rundschau 71*, 104-119.
- Tucker, R.D., Krogh, T.E. & Råheim, A. 1990: Proterozoic evolution and age - province boundaries in the central part of the Western Gneiss Region, Norway: results of U-Pb dating of accessory minerals from Trondheimsfjord to Geiranger. *In* Gower, C.F., Rivers, T. & Ryan, B. (eds.), *Mid-Proterozoic Laurentia-Baltica*. Geological Association of Canada, Special Paper 38, 149-173.
- Tucker, R.D., Ashwal, L.D., Handke, M.J., Hamilton, M.A., Le Grange, M. & Rambeloson, R.A. 1999: U-Pb geochronology and isotope geochemistry of the Archean and Proterozoic rocks of northcentral Madagascar. *The Journal of Geology 107*, 135-153.
- Wahlgren, C.-H., Cruden, A.R. & Stephens, M.B. 1994: Kinematics of a major fan-like structure in the eastern part of the Sveconorwegian orogen, Baltic Shield, south-central Sweden. *Precambrian Research* 70, 67-91.
- Wahlgren, C.-H., Heaman, L.M., Kamo, S. & Ingvald, E. 1996: U-Pb baddeleyite dating of dolerite dykes in the eastern part of the Sveconorwegian orogen, south-central Sweden. *Precambrian Research* 79, 227-237.
- Welin, E., Lindh, A. & Kähr, A.-M. 1981: The radiometric age of the Proterozoic granite at Sandsjön, western Värmland, Sweden. *Geologiska Föreningens i Stockholm Förhandlingar 103*, 514-518.
- Welin, E., Gorbatschev, R. & Kähr, A.M. 1982: Zircon dating of polymetamorphic rocks in southwestern Sweden. Sveriges Geologiska Undersökning C797, 1-34.
- Welin, E. & Samuelsson, L. 1987: Rb-Sr and U-Pb isotope studies of granitoid plutons in the Göteborg region, southwestern Sweden. *Geologiska Föreningens i Stockholm Förhandlingar 109*, 39-45.
- Welin, E. 1994: Isotopic investigations of Proterozoic igneous rocks in south-western Sweden. *GFF 116*, 75-86.
- Whitehouse, M.J., Claesson, S., Sunde, T. & Vestin, J. 1997: Ion microprobe U-Pb zircon geochronology and correlation of Archaean gneisses from the Lewisian complex of Gruinard Bay, northwestern Scotland. *Geochimica et Cosmochimica Acta* 61, 4429-4438.
- Whitehouse, M.J., Kamber, B.S. & Moorbath, S. 1999: Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland a reassessment based on combined ion-microprobe and imaging studies. *Chemical Geology 160*, 201-224.
- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F.,

Von Quadt, A., Roddick, J.C. & Spiegel, W. 1995: Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. *Geostandards Newsletter 19*, 1-23.

- Zhou, X.Q., Bingen, B., Demaiffe, D., Liégeois, J.-P., Hertogen, J., Weis, D. & Michot, J. 1995: The 1160 Ma old Hidderskog meta-charnockite: implications of this A-type pluton for the Sveconorwegian belt in Vest Agder (SW Norway). *Lithos 36*, 51-66.
- Åhäll, K.-I., Persson, P.-O. & Skiöld, T. 1995: Westward accretion of the Baltic Shield: implications from the 1.6 Åmål-Horred Belt, SW Sweden. *Precambrian Research 70*, 235-251.
- Åhäll, K.-I., Samuelsson, L. & Persson, P.-O. 1997: Geochronology and stuctural setting of the 1.38 Ga Torpa granite; implications for charnockite formation in SW Sweden. *GFF 119*, 37-43.
- Åhäll, K.-I. & Connelly, J. 1998: Intermittent 1.53-1.13 Ga magmatism in western Baltica; age constraints and correlations within a postulated supercontinent. *Precambrian Research 92*, 1-20.
- Åhäll, K.-I., Cornell, D.H. & Armstrong, R. 1998: Ion probe zircon dating of metasedimentary units across the Skagerrak: new constraints for early Mesoproterozoic growth of the Baltic Shield. *Precambrian Research 87*, 117-134.
- Åhäll, K.-I. & Schöberg, H. 1999: The 963 Vinga intrusion and post-compressional deformation in the Sveconorwegian orogen, SW Sweden. *GFF 121*, 101-106.
- Åhäll, K.-I., Connelly, J.N. & Brewer, T.S. 2000: Episodic rapakivi magmatism due to distal orogenesis? Correlation of 1.69-1.50 Ga orogenic and inboard, "anorogenic" events in the Baltic shield. *Geology 28*, 823-826.
- Åhäll, K.-I. & Larson, Å. 2000: Growth-related 1.85-1.55 Ga magmatism in the Baltic Shield; a review addressing the tectonic characteristics of Svecofennian, TIB 1 -related, and Gothian events. *GFF* 122, 193-206.

Table 1. Sı	ımmary of san	npling and zircon L	J-Pb geochr	onological	data soi	rted by ag	е								
Area	Unit (1)	Lithology	Deformatior (2)	ı Sample	X (3)	Y (3)	Minerals (4)	Method	n tot (5)	n sel [(5)	MSWD (6)	Age (Ma)	± 2σ	(2)	Fig. (8)
Magmatic roc Idefjorden terri Hønefoss Østre Toten	ks <i>me</i> Follum Vindflomyra	tonalite gneiss granodiorite gneiss	medium strong	N95-130 N95-95	568300 595600	6673000 6710900	Amp, Bt, Ttn Bt, Ttn, Ep	ID-TIMS	44	44	U.I. 0.63	1555 1606	3	intrusion intrusion	8B 8A
Bamble-Kongs. Sigdal	berg sector Veldstad	granodiorite gneiss	medium	N95-66	539300	6654300	Bt, Amp, Ep	ID-TIMS	4	4	U.I.	1500	Ŋ	intrusion	8C
Telemark secto Gol Uvdal	, Gol Rjukan gp	granite gneiss metarhyolite	medium weak	N95-112 S93-305	494100 493200	6727800 6678900	Bt, Amp, Ttn Bt, Ms	ID-TIMS ID-TIMS	5 4	5 4	U.I. U.I.	1492 1512	$\frac{3}{10}$	intrusion extrusion	8E 8D
Suldal sector Suldal	Suldal	augen gneiss	medium	B00-144	361332	6598990	Bt, Ttn, Ep	LA-ICPMS	12	Ξ-	0.41	1018	33 23	intrusion	10J
Sauda	Vanvik	granite gneiss	medium	B00-147	348978	6604031	Bt, Ms, Grt, Ep	LA-ICPMS	7	- m -	1.0	1424 1065 1508	74 74	intrusion relic	10I
Ullensvang Skånevik	Ullensvang gp Skånevik supra	metarhyolite metarhyolite	weak weak	S93-338 J-482A	369900 331550	6695100 6625250	Bt, Ms, Ep Bt, Ms	ID-TIMS SIMS	3	3 2 3	0.49 1.3	1489 1491	2 – υ (extrusion	8F 9B
Køldal Sauda Sauda	Køldal Sauda supra Sauda supra	augen gneıss augen gneiss granodiorite gneiss	strong strong weak	B00-127 B00-106 B00-145	374822 355423 356486	6632511 6616505 6615548	Bt, Ep, Itn Bt, Ttn, Ep Bt, Amp, Ttn, Ep	LA-ICPMS LA-ICPMS LA-ICPMS	11 11	11 11	$\begin{array}{c} 0.50 \\ 0.30 \\ 0.41 \end{array}$	1495 1496 1497	13 11 12	intrusion intrusion intrusion	10A 10B 10C
Bykle Bvkle	Botsvatn Botsvatn	granodiorite gneiss granite gneiss	strong	B02-022 B02-027	401532 401374	6584563 6584548	Bt, Amp, Ttn Bt, Ttn	SIMS	11	9 16	1.3 2.7	1498 1499	8	intrusion	9C 9D
Sauda	Vanvik	granite gneiss	weak	B00-149	349902	6604087 6504303	Bt, Ep, Ttn Pt Ttr	LA-ICPMS	11	11	0.51	1499	11	intrusion	10H
Suldal	Sand	granodiorite	weak	B00-139	353257	6594411	Amp, Bt, Ttn	LA-ICPMS	12	12	1.4	1506	13	intrusion	10G
Sauda	Aurdal Vanvik	granite augen gneiss	weak weak	K94-66 B00-112 B00-140	314950 345527 257540	6600998 6600998 6607218	Bt, MIS Bt Dt Amer Fin Tim	LA-ICPMS	ω ∞ <u>τ</u>	νœç	0.76	1516 1516	7 [] 5	intrusion	ا0F
Metasediment	sultaal supra	granodiorite gneiss	surong	DUU-14U	04c/cc	Q1C/6C0	ы, Атр, Ер, 1tn	LA-IUPMS	11	10	10	6161	71	Intrusion	101
Telemark secto Uvdal	Gøyst	metasandstone	medium	B98-43	483400	6679600	Bt, Ms, Grt	SIMS	21	∞ <> ∞ <> ∞ <> <> <> <> <> <> <> <> <> <> <> <> <>	0.91	1508 1635 1751 1801 1834 1980	10 23 30 11 25	detrital detrital detrital detrital detrital	94
 (1) gp: group: (2) Qualitativ (3) UTM WG (4) Diagnostii (5) n tot: tota (5) m SWD: M (7) Interpreta (8) Figure pre 	supracrus evaluation of th e evaluation of th S84 coordinates, : 584 coordinates, : 584 coordinates, : 584 coordinates, : 184 coordinates, : 184 concervists inhe senting the concerving the concerving senting the concerving the conc	titals. te deformation of the rc zene 32. amphibole; Bt: biotite; ses; n sel: number of ar hed Deviation obtainec of the event dated bas rrited from the source; or dia diagram	ock following f Ms: muscovite nalyses selected of on petrogra detrital: detrit	ield and petr ;; Ttn: titanit 1 for age calc mean 207Pb phy of the rr al zircon clas	:ographic c :e; Ep: epid ulation. /206Pb ag ock and cat	lata. ote; Grt: gaı e calculatior thodolumin	:net. 3; U.J.: upper inter escence imaging o	cept age.; se Tr f zircon;	ble 2 fo	or deca	/ constan	ts.			

Table 2. ID-TIMS zi	rcon U-	Pb data.													
Fraction properties	Co. Wt.	ncentratio Pb rad	U U	Pb com	Th/U	Atomic ratios ²⁰⁶ Pb ²⁰⁴ Pb	²⁰⁷ Pb ²⁰⁶ Pb	Ψ	²⁰⁷ Pb ²³⁵ U	÷σ	206Pb 238U	±α	Age 207Pb 206Pb	d H	Disc
(1)	(μg) (2)	(ppm) (2)	(ppm) (2)	(pg) (3)	(4)	(5)	(9)		(9)		(9)		(Ma) (7)		(%) (8)
N95-95, Vindflomyra gr	anodioriti	ic gneiss, F	ig. 8A												
1 3gr,+75,pb,t-pr	11	36.1	117	1	0.57	15313	0.09908	υ,	3.84672	611	0.28158	44	1606.8	0.9	
2 3gr,+75,pb,t-pr 3 1gr,+75,pb,t-pr	3 n	36.7 32.8	$118 \\ 106$	4 0	0.60 0.59	5408 2978	0.09904 0.09890	6 15	3.85506 3.83108	571 827	0.28231 0.28095	40 50	1606.1 1603.4	1.2 2.8	
N95-130, Follum tonalit	e gneiss, F	ig. 8B													
1 $8gr,+75,cl,c,s-pr$	19	18.2	59	7	0.74	10877	0.09617	9	3.59361	566	0.27102	41	1551.1	1.2	0.8
2 6gr,+75,cl,c,s-pr 3 8gr,+75,cl,c,s-pr	16 19	21.7 20.8	71 67	1	0.68 0.75	2717 14398	0.09627 0.09645	13	3.60478 3.60957	771 606	0.27158 0.27143	63 46	1553.0 1556.5	2.6 1.4	0.5 0.6
4 15gr,-75,cl,c,s-pr	31	18.9	65	5	0.62	18223	0.09601	. 9	3.48688	571	0.26340	43	1547.9	1.1	4.2
N95-66, Veldstad granod	liorite gne	eiss, Fig. 80													
1 4gr,+75,c,tu,t-pr	4	167	639	0 I	0.28	25663	0.09351	ιΩ ι	3.34059	393	0.25911	30	1498.2	0.9	1.4
2 4gr,+75,pb,t-pr 3 2 <i>ar</i> +75 ab t- <i>br</i>	10	161 106	405 405	ი [0.33	20213	0.09327	റഗ	3.30433 3.30349	624 491	0/9520	48 88	1493.4 1499 5	0.9	5.2 9 C
4 4gr,+75,pb,tu,t-pr	8	100	40.5 389	5	0.28	21579	0.09335	04	3.27935	426 426	0.25479	33 33	1495.0	0.9	2.0 3.4
S93-305, Rjukan group r	netarhyol	ite, Fig. 8D	~												
1 2gr,+75,cl,c,s-pr	8	31.4	111	5	0.57	9370	0.09347	2	3.34870	556	0.25984	41	1497.4	1.5	5.8
2 1gr,+75,cl,c,e,s-pr	υ,	31.9	115	7 -	0.49	6528 19997	0.09318	~ ~	3.32506	551	0.25880	38	1491.6	1.6	7.2
2 5gr,vpb-c,eq,e,pr 4 6arclces-mr	14 0	ر کم کر	100		05.0	14070	0.09135	0 0	3.11663	459 459	0.25892	10	1494.4 1453 0	1.7	0.7 717
5 4gr,-75,cl,c,l-pr	6	20.4	77	9	0.59	1861	0.09027	10	3.02146	541	0.24277	39	1431.2	2.1	27.2
N95-112, Gol granite gn	eiss, Fig. I	لىا													
1 2gr,+75,pb,t-pr	5	28.4	104	2	0.43	5771	0.09323	6	3.34263	509	0.26003	34	1492.6	1.8	0.2
2 3gr,+75,pb,pr	L -	50.4 72.7	191		0.39	14108	0.09265	υ,	3.23044	523	0.25250	40	1480.8	1.1	4.0
<i>5</i> 2gr,+75,pb,t-pr 4 2gr,+75,pb,t-pt	4 4	6.4 66.4	260 260	7 m	0.46 0.46	5627	0.09222	0	3.22034 3.06422	418 464	0.24100	32 33	14/6.0 1471.8	$1.1 \\ 1.4$	4.3 9.8
S93-338, Ullensvang gro	up metarl	'Ivolite, Fig	. 8F	I.						1					
1 3gr,-75,cl,c,eu,pr	10	52.9	201	2	0.30	13606	0.09300	9	3.31634	535	0.25863	42	1487.8	1.2	
2 5gr,-75,cl,c,eu,pr,i 3 19r,+75.cl,c,nr,i	9 10	53.4 52.9	202 201		0.31	20995 32517	0.09303	ю IC	3.32410 3.32695	484 501	0.25915 0.25925	38 40	1488.5 1489.4	1.2	
R94-66, Aurdal granite, l	ig. 8G		1	I								1			
1 3gr,+75,cl,c,eu,pr	6	30.4	115	2	0.28	6874	0.09383	8	3.36778	497	0.26033	37	1504.6	1.5	
2 10gr,+75,cl,eu,l-pr	18	57.1	217	<2 I	0.24	40063	0.09386	υ	3.38663	462	0.26170	37	1505.3	1.1	
3 10gr,cl-pb,c,pr	Ω	60.7	67.67	ۍ	0.26	4358	0.09393		3.40270	499	0.26273	38	1.0061	1.4	
(1) Cardinal number inc mm; c: colourless; cl: cle: ons are known to $\pm 30\%$ that all ²⁰⁸ Pb in excess of	licates the ar; eq: equ for sampl f blank, cc	e number o lant; eu: eu e weights c	of crystals ar ihedral; f: fa of 30 µg and o, and spike	nalysed; all teeted; i: ir ±50% for is radioge	grains we nclusion pr samples < nic (\lambda 232	re selected from 1 esent; 1-pr: long 3µg. (3) Correct Th=4.9475 10-11	non-paramagr prismatic; pb: ed for 0.0215 1 y-1). (5) Mea	netic sepa pale bro nole frac sured, un	rates at 0° till wn; pr: prism tion commor	atic; s-pr: n-Pb in tho io. (6) Ra	agnetic field in short prismati e ²⁰⁵ Pb- ²³⁵ U s ₁ tio corrected f	Frantz N c; t-pr: tip oike. (4) C	fagnetic Sepa os from prism Calculated Th nation, spike,	rator; +75 L (2) Conc /U ratio as blank, an	: size in entrati- suming l initial
common-Pb (at the dete = 0.2 pg ; Pb blank < 10 r = $137.88.$ (8) Percent dis	rmined a og. Absolu cordance	ge from Sta ite uncerta: along the c	acey and Kr inties (10) i discordia lin	amers, 19, n the Pb/U ie shown i	J and ²⁰⁷ P , and ²⁰⁷ P n the corre	ctionation correc b/ ²⁰⁶ Pb ratios ca sponding concoi	tion = 0.094% lculated follow rdia diagram, I	/amu (± ring Ludv tig. 8.	0.025% 10); (7 vig (1980). (7	J fraction) λ ²³⁸ U =	ation correctio : 1.55125 10 ⁻¹⁰	y^{-1}, λ^{235}	%/amu (±0.0 U = 9.8485 10		U/ ²³⁵ U

Concentratic mple/U ialysis (ppm)															
	ons Th (ppm)	Pb (ppm)	Atomic ratios 206pb 204pb	207Pb 206Pb	±σ (%)	²⁰⁷ Pb ²³⁵ U	±σ (%)	206Pb 238U	±σ (%)	rho	Ages 207pb 206pb (Ma)	Ψ	²⁰⁶ Pb ²³⁸ U (Ma)	i+ I+	Disc.
			(1)	(2)		(2)		(2)		(3)					(4)
43, Gøyst (complex ii	n Uvdal, m	etasandstone,	Fig. 9A											
75	85	27	77700	0.09331	1.14	3.256	2.51	0.2531	2.24	0.89	1494	21	1454	29	97.3
74	111	30	38625	0.09338	0.79	3.405	2.37	0.2644	2.24	0.94	1496	15	1512	30	101.1
81	161	35	18836	0.09349	0.75	3.362	2.36	0.2608	2.24	0.95	1498	14	1494	30	99.8
9/	83	/7	12162	0.09359	0.80	3.263 2 252	2.37	0.2529	2.23 2.73	0.94	1500	۲ د ز	1405	50	96.9 00 0
102	112 76	40 ۲	8/20U 76688	0.09276	0.00	2.00 747	20.7	0.2294 0.7499	67.7 67.7	0.96	1513	14	148/ 1438	00 00	6.020 05.0
109	61	36	15528	0.09458	0.64	3.431	2.32	0.2631	2.23	0.96	1520	12	1506	30	99.1
86	54	28	42937	0.09537	0.96	3.369	2.43	0.2562	2.23	0.92	1535	18	1471	29	95.8
97	58	35	5534	0.10052	0.76	3.950	2.36	0.2850	2.24	0.95	1634	14	1617	32	0.66
34	52	15	5627	0.10070	1,13	3.867	2.51	0.2785	2.24	0.89	1637	21	1584	32	96.8
107	97	46	15783	0.10604	0.73	4.635	2.36	0.3170	2.24	0.95	1732	13	1775	35 1	102.5
077	129	68	/07010	0710170	0.44	4./15	2.51	0.2220	77.7	0.98	1771	ς τ	1.004	U L L	101.8
96 174	/4 106	47 74 7	18155	0.10770	10.0 0.66	4.75	2.23 233	0 3734	67.7 86 C	0.96	1789	11	1004 1806	с с С	101.0
84	44	33	14100	0.10980	0.72	4.715	2.35	0.3114	2.24	0.95	1796	13 1	1748	5 C C C	97.3
133	80	54	39746	0.11040	0.72	4.807	2.36	0.3158	2.25	0.95	1806	13	1769	35	98.0
117	86	51	10778	0.11074	0.60	5.014	2.31	0.3284	2.23	0.97	1812	11	1831	36	101.0
148	61	61	38139	0.11190	0.51	5.176	2.30	0.3355	2.24	0.98	1831	6	1865	36	101.9
240	169	102	45228	0.11220	0.40	4.962	2.27	0.3208	2.23	0.98	1835		1793	35	97.7
115	111	לט רק	26254	0.11460 0.12160	0.49 0.72	5 978	2.29	0.3197	2.23	0.98	1980	ب 13 ل	1966	35 28	5.56 2.69
leasured r atio after (oefficient	atio correction of error co	for comm orrelation liscordia lii	on Pb, using p	resent-day ave n: 100 *(²⁰⁶ Ph	rage terrest //238U age)/(rial isotopic	composition	n following Sta	icey & Krame	ers (1975)					
	5		0	,	5		, >								
				-	-	-	-								
le 4. SI	ah-U SM	data on	zırcon tron	n orthogneis.	s and mei	arhyolite s	amples								
oncentrati ple/ U	ons Th	Pb	Atomic ratios ²⁰⁶ Pb	$^{207}\mathrm{Pb}$	τq	$^{207}\mathrm{Pb}$	±σ	206 Pb	±σ	rho	${ m Ages}_{207{ m Pb}}$	±σ	206 Pb	₽	Disc.
'sis			^{204}Pb	^{206}Pb		235U		238U			206Pb		238U		
(mqq)	(mqq)	(mdd)	(1)	(2)	(%)	(2)	(%)	(2)	(%)	(3)	(Ma)		(Ma)		(%) (4)
A C1-8		1:40 Ei ~ 0	e,												
A, SKAIIEVI (5) 356 165	ік шетагиу 44 24	01116, F18. 5 97 50	9D 24414 5519	0.09190 0.09212	0.40	3.062 3.403	2.35	0.2416	2.23	0.95	1465 1470	8 14	1395 1530	28 30	95.2 104.1
279	42	36 86	17376	0.09245	0.37	3.462	2.26	0.2716	2.23	0.99	1477	<u>د</u> ۲	1549	31	104.9

		i	
$\begin{array}{c} 104.0\\ 102.7\\ 108.7\\ 108.7\\ 106.7\\ 95.8\\ 95.8\\ 105.5\\ 105.5\\ 97.8\\ 103.5\\ 104.6\\ 97.8\\ 101.4\end{array}$	$\begin{array}{c} 102.1 \\ 106.4 \\ 106.4 \\ 101.3 \\ 101.3 \\ 100.3 \\ 100.3 \\ 99.4 \\ 99.4 \\ 99.4 \\ 010.0 \\ 100.0 \\ 101.9 \end{array}$	$\begin{array}{c} 103.8\\ 101.7\\ 97.9\\ 100.5\\ 100.6\\ 100.6\\ 100.6\\ 100.6\\ 100.6\\ 97.2\\ 97.2\\ 95.7\\ 95.7\\ 95.7\\ 95.9\\ 95.9\\ 95.9\\ 95.9\\ 95.9\end{array}$	
30 33 33 33 33 33 33 33 33 33 33 33 33 3	18 21 19 19 19 19 19	19 19 19 14 19 19 19 19 19 19 19 19 19	
1539 1524 1613 1613 1602 1583 1423 1571 1430 1549 1549 1566 1566 1522	1449 1517 1517 1503 1494 1494 1493 1412 1412 1507 1541	1501 1491 1440 1478 1547 1482 1499 1521 1499 1527 1458 1531 1602 1602 1602 1602 1602	
102	$\begin{array}{c} 9 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	11 15 13 14 15 15 11 15 11 15 11 11 11 11 11 11 11	
1480 1483 1484 1484 1484 1487 1489 1497 1497 1497 1500	1419 1465 1477 1484 1489 1489 1489 1492 1500 1500 1503 1513	1445 1466 1470 1471 1471 1478 1478 1490 1496 1496 1498 1498 1503 1503 1503 1503 1503 1523 1533	
$\begin{array}{c} 0.97\\ 0.97\\ 0.98\\ 0.98\\ 0.98\\ 0.98\\ 0.99\\$	$\begin{array}{c} 0.95\\ 0.96\\ 0.95\\ 0.95\\ 0.94\\ 0.94\\ 0.94\\ 0.96\\ 0.94 \end{array}$	$\begin{array}{c} 0.92\\ 0.87\\ 0.89\\ 0.86\\ 0.86\\ 0.89\\ 0.93\\ 0.92\\ 0.98\\$	iers (1975)
2.26 2.23 2.23 2.23 2.23 2.23 2.23 2.23	1.41 1.53 1.41 1.41 1.42 1.42 1.42 1.41 1.41 1.41	1.41 1.41 1.41 1.41 1.41 1.41 1.07 1.75 3.07 3.07 3.07 1.41 1.45 1.41 1.45 1.44 1.44 1.44 1.44	ıcey & Kram
0.2696 0.2666 0.2844 0.2821 0.2760 0.2760 0.2715 0.2715 0.2755 0.2750 0.2750 0.2750	0.25209 0.25209 0.26522 0.26522 0.26733 0.26733 0.26733 0.26639 0.26639 0.26339 0.26339	0.26213 0.26018 0.25029 0.25766 0.251117 0.25844 0.25182 0.26182 0.26182 0.26182 0.25384 0.25736 0.25573 0.26514 0.25573 0.25573 0.25573 0.25573	n following Sta
2.34 2.33 2.30 2.23 2.31 2.25 2.23 2.25 2.25 2.25 2.25 2.25 2.25	$\begin{array}{c} 1.49\\ 1.60\\ 1.59\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.49\\ 1.49\end{array}$	$\begin{array}{c} 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.52\\ 1.53\\ 1.56\\ 1.25\\ 1.57\\ 3.31\\ 1.57\\ 3.31\\ 1.57\\ 3.31\\ 1.55\\ 3.13\\ 3.13\\ 1.53\\ 3.13\\ 3.13\\ 3.16\\ 1.53\\ 3.09\end{array}$	compositio 3 age)
3.442 3.410 3.638 3.562 3.562 3.541 3.542 3.543 3.195 3.498 3.498 3.543 3.498 3.543	3.1183 3.4665 3.3609 3.3462 3.3466 3.3466 3.3466 3.3466 3.1645 3.1645 3.1645 3.5080	3.2866 3.2972 3.1794 3.2742 3.4589 3.4589 3.4745 3.4745 3.4775 3.4775 3.4775 3.4775 3.4775 3.4775 3.4775 3.4775 3.4775 3.4775 3.2526 3.3558 3.3558 3.5206	trial isotopic /(²⁰⁷ Pb/ ²⁰⁶ Pl
$\begin{array}{c} 0.61\\ 0.53\\ 0.34\\ 0.48\\ 0.44\\ 0.44\\ 0.25\\ 0.25\\ 0.25\\ 0.35\\ 0.35\\ 0.37\end{array}$	$\begin{array}{c} 0.47\\ 0.47\\ 0.47\\ 0.73\\ 0.42\\ 0.42\\ 0.75\\ 0.42\\ 0.42\\ 0.42\\ 0.42\\ 0.42\\ 0.42\end{array}$	$\begin{array}{c} 0.58\\ 0.81\\ 0.81\\ 0.56\\ 0.71\\ 1.04\\ 1.04\\ 0.75\\ 0.66\\ 0.88\\ 0.75\\ 0.69\\ 0.79\\ 0.79\\ 0.79\\ 0.79\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.80\end{array}$	erage terres 5/ ²³⁸ U age)
$\begin{array}{c} 0.09260\\ 0.09277\\ 0.09280\\ 0.09281\\ 0.09281\\ 0.09297\\ 0.09343\\ 0.09343\\ 0.09344\\ 0.09358\\ 0.09364\end{array}$	neiss, Fig. 9C 0.08971 0.09188 0.09248 0.09319 0.09319 0.09373 0.09373 0.09373 0.09373 0.09422	 Fig. 9D 0.0904 0.09191 0.09213 0.09216 0.09216 0.09216 0.09311 0.09311 0.09359 0.09374 0.09374 0.09403 0.09405 0.09416 0.09523 0.09523 	present-day av in: 100 *(²⁰⁶ Pł
7943 11064 20333 20333 20585 20585 20585 10872 24426 21444 11444 116650 21538	granodiorite g 26522 26522 12612 61958 48745 109487 22879 22879 22879 22833 32951 22833 32951 23416 33579	granite gneiss 18549 1865 18865 18865 18808 27677 20608 27677 13728 13728 13728 13723 33722 18913 33720 13721 66310 16452 118808 118808	ion Pb, using J ine to the orig e calculation.
55 43 89 89 110 113 113 113 143 97 87 87	s complex, 82 82 44 44 151 151 155 165 83 83 87 87 81 80 81 91	s complex, 49 41 45 45 47 45 45 113 113 113 51 67 67 67 67 67 67 67 67 67 67 67 67	ı for comm :orrelation discordia l
28 21 36 49 72 121 121 43 40	atn gneis: 1 146 54 54 341 53 132 132 127 44	atn gneiss 45 40 84 84 45 77 45 124 124 129 109 46 65 61 61 81 88 81 27	atio correctior of error c e along a scarded fo
179 141 276 344 420 357 568 459 310 230 230 286	22, Botsv) 297) 314 457 457 475 135 257 245 245 245 297	27, Botsv 158 135 265 146 149 386 396 149 386 336 149 378 378 161 161 226 205 97 151 151 151 290	easured r ttio after o oefficient scordanc alysis dis
13a 09a 08a 06a 06a 014 01a 01a 01a 07a 05a	B02-0 08a (5 07a (5 01a 12b 13b 13b 12a 12a 12a 17a 06a 03a 03a	B02-0 03a (5 19a 18a 13a 06b 11a 11a 11a 08a 15a 08a 08a 08b 08b 08b 08b 08b 08b 08b 06a	 M. M. Ra CC CC CC Di Di Di An

Table	5. LA-ICP/	MS U-Pb d	lata on zi	rcon fron	n orthogne	eiss sample	es					
A Sample/ analysis	tomic ratios ²⁰⁷ Pb ²⁰⁶ Pb	±σ	²⁰⁷ РЬ 235U	±σ	²⁰⁶ РЬ 238U	±σ	rho	Ages ²⁰⁷ РЬ ²⁰⁶ РЬ	±σ	²⁰⁶ рь 238U	±σ	Disc.
	(1)		(1)		(1)		(2)	(Ma)		(Ma)		(%) (3
Dog 127		D J J J F	104									
B00-12/ 2a	, Augen gneis	ss, Røldal, Fig	g. 10A 3 53	0.07	0 277	0.004	0.80	1475	22	1576	22	106.8
17b	0.0926	0.0012	2.92	0.06	0.229	0.003	0.74	1479	25	1330	18	89.9
8	0.0927	0.0008	3.29	0.05	0.257	0.004	0.87	1481	15	1476	19	99.6
12	0.0929	0.0011	3.42	0.07	0.267	0.004	0.79	1487	23	1526	22	102.6
9	0.0931	0.0010	2.89	0.05	0.226	0.003	0.80	1489	21	1311	18	88.1
5	0.0932	0.0013	3.26	0.07	0.254	0.004	0.76	1491	27	1460	21	97.9
11	0.0934	0.0011	2.97	0.06	0.230	0.004	0.81	1497	23	1335	20	89.2
1	0.0938	0.0009	3.17	0.06	0.245	0.004	0.85	1505	19	1412	20	95.8
17a 4	0.0940	0.0009	3.32	0.07	0.255	0.003	0.88	1512	27	1454	20	90.5 97 1
2b	0.0950	0.0013	3.30	0.07	0.252	0.004	0.72	1512	26	1450	19	94.9
B00-106	, Augen gneis	ss, Sauda, Fig	;. 10B									
12	0.0925	0.0016	2.86	0.08	0.225	0.005	0.79	1477	34	1306	27	88.4
8b	0.0927	0.0012	2.90	0.06	0.227	0.003	0.76	1482	25	1320	18	89.1
5a 7a	0.0927	0.0009	3.13	0.06	0.245	0.004	0.88	1482	19	1410	23	95.2
7a 2b	0.0929	0.0008	3.25	0.06	0.255	0.004	0.85	1405	17	1432	19	97.7
20 5b	0.0934	0.0010	3.03	0.05	0.239	0.004	0.90	1494	20	1364	18	91.1
2c	0.0935	0.0006	3.27	0.05	0.254	0.004	0.91	1498	13	1458	19	97.3
7b	0.0937	0.0015	3.08	0.06	0.238	0.003	0.66	1503	29	1377	17	91.7
8a	0.0940	0.0008	3.21	0.06	0.247	0.004	0.90	1509	15	1425	21	94.5
11	0.0942	0.0014	3.15	0.07	0.243	0.004	0.77	1511	27	1400	22	92.6
3	0.0942	0.0014	3.01	0.06	0.232	0.003	0.69	1513	28	1345	17	88.9
B00-145	, granodiorit	e gneiss, Sau	da, Fig. 10C	;								
4	0.0924	0.0025	2.94	0.09	0.230	0.003	0.39	1475	51	1337	14	90.6
2	0.0926	0.0009	3.15	0.04	0.247	0.002	0.65	1479	18	1421	11	96.1
3	0.0927	0.0009	3.08	0.06	0.241	0.004	0.87	1482	19	1392	22	93.9
15	0.0927	0.0008	3.08	0.06	0.241	0.004	0.88	1483	17	1392	21	93.9
11 7	0.0929	0.0028	3.41 3.30	0.14	0.266	0.008	0.69	1485	57 21	1522	39 12	102.5
13	0.0935	0.0010	3.10	0.05	0.204	0.002	0.02	1490	21	1300	12	92.8
9	0.0936	0.0019	3.40	0.08	0.264	0.003	0.50	1501	39	1508	16	100.5
6	0.0938	0.0007	3.20	0.04	0.247	0.003	0.83	1504	13	1424	13	94.7
8	0.0941	0.0007	3.45	0.04	0.266	0.003	0.78	1510	14	1521	13	100.8
14	0.0943	0.0018	3.29	0.08	0.253	0.004	0.63	1513	36	1455	20	96.2
5	0.0949	0.0016	3.17	0.06	0.243	0.003	0.53	1525	33	1401	14	91.8
B00-140	, granodiorit	e gneiss, Sulo	dal, Fig. 10D)								
5b (4)	0.0915	0.0009	3.30	0.06	0.262	0.004	0.83	1457	19	1499	20	102.9
2a	0.0937	0.0008	4.06	0.08	0.314	0.005	0.90	1503	16	1760	27	117.1
la Es	0.0938	0.0012	3.36	0.08	0.260	0.005	0.85	1505	23	1488	26	98.9
50 5a	0.0940	0.0009	3.62	0.07	0.279	0.005	0.87	1508	20	1500	24	105.5
2b	0.0941	0.0008	3.49	0.07	0.269	0.005	0.90	1510	17	1534	25	101.6
5d	0.0947	0.0008	3.22	0.06	0.247	0.004	0.89	1522	15	1421	20	93.3
1b	0.0948	0.0013	3.27	0.07	0.250	0.004	0.74	1524	25	1441	19	94.5
4a	0.0951	0.0010	3.64	0.07	0.278	0.005	0.86	1531	20	1580	24	103.2
4b	0.0960	0.0012	3.40	0.07	0.257	0.004	0.76	1548	24	1473	20	95.1
3b	0.0961	0.0011	3.49	0.06	0.263	0.004	0.80	1550	21	1506	19	97.2
B00-137	, augen gneis	s, Sand, Fig.	10E	0.04	0.194	0.003	0.95	1412	17	1101	14	77.0
1 (4) 9	0.0894	0.0008	2.50	0.04	0.186	0.003	0.85	1413	1/ 27	1101	14 21	77.9 98.2
12	0.0932	0.0008	3.15	0.04	0.245	0.004	0.74	1493	16	1415	13	94.8
2	0.0933	0.0007	3.16	0.04	0.246	0.002	0.77	1494	15	1417	12	94.9
16	0.0935	0.0007	3.07	0.04	0.238	0.002	0.82	1498	14	1375	13	91.8
14	0.0936	0.0009	3.14	0.06	0.243	0.004	0.84	1501	19	1403	19	93.5
13	0.0937	0.0012	3.44	0.10	0.266	0.007	0.90	1503	25	1521	36	101.2
8	0.0939	0.0010	2.89	0.06	0.223	0.004	0.85	1506	20	1299	20	86.3
5	0.0940	0.0011	3.01	0.05	0.232	0.003	0.77	1508	22	1345	17	89.2

A Sample/ analysis	tomic ratios ²⁰⁷ Pb ²⁰⁶ Pb	±σ	²⁰⁷ РЬ ²³⁵ U	±σ	²⁰⁶ РЬ ²³⁸ U	±σ	rho	Ages ²⁰⁷ Pb ²⁰⁶ Pb	±σ	²⁰⁶ РЬ ²³⁸ U	±σ	Disc.
	(1)		(1)		(1)		(2)	(Ma)		(Ma)		(%) (3
15 3	0.0940 0.0944	$0.0008 \\ 0.0008$	2.94 2.99	0.04 0.04	0.227 0.230	0.003 0.003	0.82 0.79	1508 1516	16 16	1317 1333	15 13	87.3 87.9
B00-112	, augen gneis	s, Vanvik, Fi	g. 10F									
9a	0.0932	0.0006	3.55	0.06	0.276	0.004	0.90	1492	13	1573	20	105.4
18b	0.0942	0.0008	3.15	0.05	0.242	0.003	0.86	1513	15	1398	17	92.4
22a	0.0944	0.0007	3.45	0.06	0.265	0.004	0.89	1515	14	1517	20	100.1
220 7	0.0945	0.0008	5.09 3.57	0.05	0.257	0.005	0.84	1518	17	1571	20	90.4 102.0
7 18a	0.0949	0.0009	3 42	0.00	0.275	0.004	0.82	1524	14	1496	20	98.1
9b	0.0951	0.0008	3.21	0.06	0.245	0.004	0.87	1520	17	1413	20	92.3
15	0.0952	0.0013	3.14	0.07	0.239	0.004	0.77	1531	27	1383	21	90.3
B00 130	granodiorite	Sand Fig	106									
9	0.0923	0 0009	3 10	0.06	0 244	0.004	0.86	1474	18	1406	20	95.4
12	0.0931	0.0011	3.61	0.09	0.281	0.006	0.89	1489	22	1598	32	107.3
8	0.0935	0.0008	3.30	0.05	0.256	0.003	0.81	1498	16	1471	16	98.2
5	0.0935	0.0007	3.15	0.04	0.244	0.003	0.84	1499	13	1408	14	94.0
4	0.0935	0.0008	3.18	0.05	0.246	0.003	0.83	1499	17	1419	17	94.7
6	0.0936	0.0007	3.12	0.05	0.241	0.003	0.88	1500	14	1394	18	93.0
15	0.0938	0.0008	3.34	0.05	0.258	0.003	0.81	1504	17	1479	16	98.4
2	0.0938	0.0009	3.11	0.04	0.240	0.002	0.66	1505	18	1389	10	92.3
1	0.0940	0.0012	3.05	0.05	0.235	0.002	0.63	1509	23	1363	12	90.3
3	0.0948	0.0007	3.18	0.04	0.243	0.003	0.85	1524	13	1403	14	92.1
13	0.0953	0.0013	3.38	0.09	0.257	0.006	0.87	1535	25	1473	32	96.0
10	0.0969	0.0012	3.32	0.05	0.249	0.003	0.69	1565	22	1432	14	91.5
B00-149	, granite gnei	ss, Vanvik, F	ig. 10H									
4	0.0924	0.0009	3.22	0.05	0.253	0.003	0.71	1477	19	1452	13	98.3
5	0.0927	0.0008	3.28	0.05	0.256	0.003	0.85	1483	16	1470	18	99.2
1	0.0932	0.0008	3.27	0.06	0.254	0.004	0.85	1492	17	1460	19	97.9
2	0.0933	0.0008	3.24	0.05	0.252	0.003	0.81	1495	17	1446	16	96.8
14	0.0935	0.0009	3.20	0.05	0.248	0.003	0.80	1498	18	1430	16	95.5
3	0.0935	0.0008	3.28	0.06	0.255	0.004	0.87	1498	16	1462	20	97.6
6 12	0.0941	0.0007	3.31	0.04	0.255	0.002	0.76	1510	13	1465	11	97.0
15	0.0941	0.0010	5.07 2.46	0.05	0.237	0.005	0.72	1511	21	1570	14	90.7
9	0.0942	0.0009	5.40 3.37	0.07	0.266	0.005	0.69	1512	19	1322	13	08.3
12	0.0942	0.0013	3.32	0.07	0.259	0.003	0.00	1522	2.7	1458	21	95.8
D00 145			'L E' 10		01201	01001	0170	1022		1100		,,,,,
B00-14/	, garnet grani	te gneiss, va	1 72 INVIK, FIG. IU	0.00	0.177	0.003	0.32	041	102	1040	16	111.4
1	0.0704	0.0055	1.72	0.09	0.177	0.005	0.52	941 1056	65	001	10	03.0
4 2	0.0743	0.0024	1.71	0.00	0.176	0.002	0.41	1103	53	1045	19	94.7
8	0.0927	0.0020	3.44	0.12	0.269	0.007	0.76	1482	42	1538	36	103.8
5	0.0939	0.0014	3.21	0.07	0.248	0.003	0.66	1506	29	1428	17	94.8
6	0.0944	0.0011	3.22	0.05	0.247	0.003	0.66	1516	22	1424	13	93.9
3	0.0956	0.0089	3.20	0.33	0.243	0.011	0.43	1540	177	1401	56	90.9
B00-144	, augen gneis	s, Suldal, Fig	r. 10I									
7	0.0699	0.0027	1.74	0.07	0.180	0.002	0.29	927	80	1068	12	115.3
11	0.0713	0.0026	1.66	0.07	0.169	0.003	0.40	966	74	1004	15	103.9
10	0.0719	0.0022	1.60	0.07	0.161	0.005	0.68	983	62	963	26	98.0
9	0.0726	0.0019	1.86	0.07	0.186	0.004	0.66	1004	54	1097	24	109.3
13	0.0727	0.0012	1.89	0.05	0.188	0.004	0.76	1005	34	1112	20	110.7
2	0.0733	0.0064	1.66	0.15	0.165	0.003	0.18	1022	178	983	15	96.2
8	0.0735	0.0015	1.98	0.05	0.195	0.003	0.56	1027	40	1151	14	112.0
5	0.0743	0.0017	1.71	0.05	0.167	0.002	0.52	1050	46	996	13	94.8
12	0.0745	0.0020	1.74	0.06	0.169	0.003	0.57	1054	54	1008	17	95.6
6 14	0.0750	0.0031	1.88	0.08	0.182	0.002	0.30	1064	83 75	10/6	15	101.1
14 1	0.0750	0.0028	1.02	0.07	0.170	0.005	0.50	1/0/	10	1047	14 22	70.1 96.8
т	0.0755	0.0010	5.24	0.00	0.231	0.004	0.71	1774	55	1110	20	70.0

(1) Ratio corrected for common Pb, using mean terrestrial isotopic composition at 1500 Ma (Stacey & Kramers 1975)
 (2) Coefficient of error correlation

(3) Discordance along a discordia line to the origin: 100 *(206Pb/238U age)/(207Pb/206Pb age)
(4) Analysis discarded for mean age calculation

Table 6. Mo	nitoring of	f the accu	ıracy of	the LA-ICF	MS U-Pb	analytica	ll method	l on zircon	in 2002-2	2003 rel	ative to	ID-TIMS re	ference de	ata		
Method/ Date of	ØS9914 Age	±2σ	ц	dev	Z4510 Age	±2σ	ц	dev	ØS99316 Age	±2σ	ц	dev	Larvik Age	±2σ	и	dev
analysis	(Ma) (1)		(2)	(%) (3)	(Ma) (4)		(2)	(%) (3)	(Ma) (5)		(2)	(%) (3)	(Ma) (6)		(2)	(%) (3)
ID-TIMS	1797	±3			2700	± 1			966	± 3			294	± 1		
LA-ICPMS		-	L								c	L				
2/ Nov 02 10 Dec 02	1//8	± 19	0 4	-1.1 -0.6					106	177	×	c.u-				
12 Dec 02	1793	± 17	10	-0.2	2688	±35	5	-0.4	962	± 21	ŝ	-0.4				
11 Apr 03	1707	+14 + 22	5 V	-0.8	2684	±72	3	-0.6								
0.5 May 0.3	1787	-22 +39	0 9	-0.6					667	+46	6	0.1				
12 May 03	1790	±20	9 4	-0.4) 1	Ň		293	+1	2	-0.3
15 May 03 (7)	1793	± 18	7	-0.2	2695	± 19	9	-0.2	961	±36	7	-0.5				
21 May 03	1794	± 16	4	-0.2									293	± 1	4	-0.3
02 Jun 03	1814	±39	7	0.9												
04 Jun 03	1818	± 15	4	1.2	2695	±20	9	-0.2								
06 Jun 03 (7)	1801	±25	8	0.2												
19 Jun 03	1787	± 15	7	-0.6												
18 Nov 03	1799	±38	8	0.1												
01 Dec 03	1786	± 17	8	-0.6												
04 Dec 03	1793	±24	11	-0.2												
Mean	1794			-0.2	2691			-0.4	963			-0.3	293			-0.3
 (1) ØS-99-14, S (2) n: number o (3) Deviation in 	jona granite f analyses on % relative to	from Nord 1 distinct ci 2 reference	land, N N rystals ID-TIMS	forway, ID-T value	'IMS age by {	Skår (2002		+								
(4) Z4510, rhyo (5) ØS-99-316, <u>1</u>	lite from the porphyritic q	Northwest Juartz syen	Territori ite from J	es, Canada, l ølster plutor	D-TIMS age 1, W Norway,	by Davis {	& Peterson age by Skå	(1998). ìr & Pedersei	n (2003).							
(6) Pegmatite fr(7) Dates of ana	om the Larvi lytical work	ik district, for the sam	S Norway, uples prese	, ID-TIMS a; ented in this	ge by S. Dahl study	gren, unpı	ablished dɛ́	ata.								

Table 7. Selection of U-Pb dates on magmatic events in the Eastern Segment

Lithology, Sample	Mineral	- Age		Reference
	(1)	(Ma)		
Didde and minoral according	Class	0.4.2	12	Demen and Smeder 1000
Vaggaryd evenite, 83115	Zrn	942	±2 +6	Komer and Smeds, 1996
Görbiörnarp svenite	Zrn	1204	± 0 $\pm 14/-8$	Hansen and Lindh 1991
Gumlösa Glimåkra granite 84083	Zrn	1204	+14/-0	Johansson 1990
Vaggeryd svenite, DA195	Zrn	1204	± 10 ± 10	Aslz 1996
Vårgårda granite gneiss	Zrn	1222	+8	Berglund cited in Connelly et al 1996
Torpa granite TA1	Zrn	1359	+26	Andersson et al. 2002
Tiärnesiö granite isotronic facies Biörshult	Zrn	1368	+4	Andersson et al. 1999
Torpa granite	Zrn	1380	+6	Åhäll et al. 1997
Tiärnesiö granite, veined facies, TI25D	Zrn	1394	+11	Andersson et al., 1999
Stensiö granite pegmatite dyke, S4	Zrn	1399	+7/-6	Christoffel et al., 1999
Varberg charnockite-granite association, S8	Zrn	1399	+12/-8	Christoffel et al., 1999
Glassvik deformed pegmatite dyke	Zrn	1409	±20	Söderlund, 1996
Särdal granite pegmatite dyke, S3	Zrn	1426	+9/-4	Christoffel et al., 1999
Gåsanabbe mafic orthogneiss, S5	Zrn	1438	+12/-8	Christoffel et al., 1999
Gällared S deformed granite-aplite dyke	Zrn	1443	±26	Söderlund et al., 2002
Vråna deformed aplitic dyke, S3	Zrn	1457	±7	Connelly et al., 1996
Mölle granite gneiss, 84093	Zrn	1497	+47/-34	Johansson et al., 1993
Flackarp granite gneiss, 76314	Zrn	1531	± 8	Johansson, 1990
Hinneryd granite gneiss, 8712	Zrn	1548	± 10	Lindth, 1996
Åker metabasite	Zrn	1562	±6	Söderlund et al., 2004
Vaggeryd dolerite dyke, RA412	Zrn	1565	±5	Ask, 1996
Metadolerite dyke, CHW670-OK450	Bdl	1568	+30/-8	Wahlgren et al., 1996
Visbergen, aplitic dyke, S6	Zrn	1612	± 8	Connelly et al., 1996
Vägasked grey gneiss, 85017	Zrn	1640	± 16	Johansson et al., 1993
granodiorite Ammesjön 79112	Zrn	1645	±9	Welin, 1994
Steninge mafic dyke, Steninge, S2	Zrn	1654	±9	Christoffel et al., 1999
Visbergen, paleosome, S4	Zrn	1660	±5	Connelly et al., 1996
Karlstad metagranite, W1	Zrn	1661	±27	Söderlund et al., 1999
Särdal orthogneiss, paleosome, S1	Zrn	1664	±7	Christoffel et al., 1999
Hagshult granite, 83114	Zrn	1673	±19	Jarl, 2002
Trysil "tricolor" granite gneiss	Zrn	1673	± 8	Heim et al., 1996
Borås tonalite, AA9637	Zrn	1674	± 8	Scherstén et al., 2000
Forshaga grey granite gneiss, SWS2	Zrn	1674	+24/-19	Persson et al., 1995
Ovre Fryken metagranite, W2	Zrn	1674	±7	Söderlund et al., 1999
Broby monzonite, El	Zrn	1674	±7	Söderlund et al., 1999
Brustad augen gneiss, Br9602	Zrn	16/4	±10	Alm et al., 2002
Mårdaklev granitic gneiss	Zrn	1676	± 10	Söderlund et al., 2002
Filipstad granite gneiss, 604	Zrn	16/6	±/	Lindth et al., 1994
Gallared N, veined gneiss	Zrn	1679	±15	Soderlund et al., 2002
Dagase unweined and weined on the grades	Zm	1684	±13 ±14	Söderlund et al. 2002
Skepe felsic orthogneise SE1	Zrn	1686	±14 +11	Anderson et al. 2002
Zachrisdal quartz monzonite gneiss AI 84030	Zrn	1688	± 11 ± 10	Person et al. 1995
Torsby grapite DC9416	Zrn	1689	+12	Larson et al. 1999
Hesta granitoid suite Lake Åsunden S2	Zrn	1692	+3	Connelly et al. 1996
Rymmen gabbro 2 samples	Zrn	1692	+7	Claeson 1999
Porphyry Nyhusen TI 9403	Zrn	1697	+8	Lundavist and Persson, 1999
Gällared S orthogneiss	Zrn	1698	+12	Söderlund et al., 2002
South Härene, paleosome, S1	Zrn	1699	+3	Connelly et al., 1996
Quartz monzodiorite	Zrn	1699	+7	Stephens cited in Söderlund et al., 1999
Granite, Grå-Larsknipen, TL9406	Zrn	1702	±11	Lundqvist and Persson, 1999
Alvesta granite gneiss, 86011	Zrn	1713	±3	Johansson, 1990
Mo Tonalite	Zrn	1731	±7	Mansfeld, 2000
Granite gneiss	Zrn	1777	+38/-22	Welin cited in Söderlund et al., 1999
Filipstad granite, 82051	Zrn	1783	± 10	Jarl and Johansson, 1988
Venjan porphyry, St. Kullsberget, TL9402	Zrn	1792	+10/-8	Lundqvist and Persson, 1999
Granite locally charnockitic	Zrn	1796	±7	Stephens cited in Söderlund et al., 1999

(1) Zrn: zircon, Clm: columbite, Bdl: baddeleyite, Mnz: monazite, Ttn: titanite, Urn: uraninite, Eux: euxenite.

Table 8. Selection of U-Pb dates on magmatic events in the Idefjorden terrane

Lithology, Sample	Mineral ·	- Age		Reference
	(1)	(Ma)		
Hakefjorden norite, contact melt HAS96003	Zrn	916	± 11	Scherstén et al., 2000
Bohus granite, pegmatite-aplite, 88102	Mnz	922	±5	Eliasson and Schöberg, 1991
Flå granite	Zrn	928	±3	Nordgulen et al., 1997
Göteborg dolerite, Tuve dyke	Bdl	935	±3	Hellström et al., 2004
Vinga porphyry	Zrn	963	±17	Åhäll and Schöberg, 1999
Skuleboda rare-mineral pegmatite	Clm	984	±6	Romer and Smeds, 1996
Högsbo rare-mineral pegmatite	Clm	1030	± 1	Romer and Smeds, 1996
Timmerhult rare-mineral pegmatite	Clm	1039	±3	Romer and Smeds, 1996
Skantorp rare-mineral pegmatite	Clm	1041	±2	Romer and Smeds, 1996
Sandsjön granite gneiss, 78140	Zrn	1210	+36/-34	Welin et al., 1981
Segmon granite, SWS9	Zrn	1249	+10/-7	Persson et al., 1983
Raufoss granite gneiss	Zrn	1250	±22	Nordgulen et al., 1997
Bunketorp granite, 79023	Zrn	1279	±62	Welin and Samuelsson, 1987
Støvika granite gneiss, Einavatnet	Zrn	1280	+22/-14	Nordgulen et al., 1997
Ursand granite	Zrn	1319	±6	Piontek et al., 1998
Chalmers gabbro, felsic facies, DC9723	Zrn	1333	± 8	Kiel et al., 2003
Hästefjorden granite	Zrn	1334	+7/-3	Piontek et al., 1998
Askim granite, 78170	Zrn	1362	±9	Welin and Samuelsson, 1987
Orust dyke swarm, Islandsberg dyke	Zrn	1457	± 6	Åhäll and Connelly, 1998
Brevik gabbro	Zrn	1502	±2	Åhäll and Connelly, 1998
Stigfjorden granite	Zrn	1503	+3/-2	Ahäll and Connelly, 1998
Norstrand-Sørmarka granodiorite, TA121	Zrn	1517	±12	Andersen et al., 2004
Röseskär felsic dyke	Zrn	1553	±2	Connelly and Åhäll, 1996
Rivöfjorden layered gabbro	Zrn	1555	±2	Åhäll et al., 2000
Burö-Hällsö diorite	Zrn	1555	±2	Connelly and Åhäll, 1996
Förö granite dyke	Zrn	1558	±3	Åhäll et al., 2000
Länsmansgården granite	Zrn	1559	±2	Åhäll et al., 2000
Bäckefors granite	Zrn	1562	±2	Ahäll et al., 2000
Gösta granite, SWS7	Zrn	1563	+32/-21	Persson et al., 1983
Hisingen granite	Zrn	1563	±2	Åhäll et al., 2000
Midtskog tonalite, TA116	Zrn	1567	± 8	Andersen et al., 2004
Feiring quartz diorite, Ø3	Zrn	1574	±17	Andersen et al., 2004
Idala tonalite	Zrn	1584	±15	Åhäll et al., 1995
Bjørkelangen granodiorite, TA118	Zrn	1585	± 18	Andersen et al., 2004
Bua gneiss, TK1-TK2	Zrn	1585	± 11	Andersson et al., 2002
Rönnäng tonalite	Zrn	1587	±3	Connelly and Åhäll, 1996
Uddevalla granodiorite, 76267	Zrn	1587	±36	Welin et al., 1982
Stenkyrka granite	Zrn	1588	±5	Connelly and Åhäll, 1996
Racken red syeno-granite gneiss, DC972	Zrn	1590	± 14	Larson et al., 1999
Harnäs gneiss, Hn96093	Zrn	1595	+24/-17	Alm et al., 2002
Racken quartz monzodiorite gneiss, DC9413	Zrn	1596	±11	Larson et al., 1999
Tistedal granodiorite, Ø1	Zrn	1599	+15/-16	Andersen et al., 2004
Lerum granite, 76263	Zrn	1603	± 40	Welin and Samuelsson, 1987
Stora Lundby granodiorite, mesosome 9701b	Zrn	1605	± 10	Scherstén et al., 2004
Höjen tonalite, SWS8	Zrn	1609	+35/-25	Persson et al., 1983
Åmål fm, Tösse porphyry	Zrn	1614	±7	Lundqvist and Skiöld, 1993
Slemmestad metarhyolite, 01/25	Zrn	1615	±31	Andersen et al., 2004
Amål granodiorite, 77018	Zrn	1616	±24	Welin et al., 1982
Olstorp ultramafic intrusion, contact melt OD16	Zrn	1624	±6	Scherstén et al., 2000
Horred fm, Mjösjö dacite	Zrn	1643	±29	Åhäll et al., 1995
Horred fm, dacite	Zrn	1659	+8/-6	Connelly and Åhäll, 1996

(1) Zrn: zircon, Clm: columbite, Bdl: baddeleyite, Mnz: monazite, Ttn: titanite, Urn: uraninite, Eux: euxenite.

Table 9. Selection of U-Pb dates on magmatic events in the Bamble-Kongsberg sector Lithology, Sample Mineral - Age Reference (Ma) (1)Herefoss granite Zrn 920 +16/-27 Andersen et al., 2002 a Herefoss granite, 107 Ttn 926 Andersen, 1997 ± 8 Grimstad granite Zrn 989 ± 9 Kullerud and Machado, 1991 1060 Baadsgaard et al., 1984 Gloserheia pegmatite Eux +8/-6 Gjeving metacharnockite 1152 ± 2 Kullerud and Machado, 1991 Zrn Levang granitic gneiss dome, Southern part 1167 ± 50 O'Nions and Baadsgaard, 1971 Zrn Hovdefjell metacharnockite 1168 ± 2 Råheim unpublished Zrn Tromøy complex, Hisøy tonalite, HGG Andersen et al., 2004 Zrn 1178 ±9 Tromøy gneiss complex, 4 samples Knudsen and Andersen, 1999 Zrn 1198 ±13 Nelaug gneiss de Haas et al., 2002 Zrn 1460 ±21 Jomås granodiorite, JOM 1522 Andersen et al., 2004 Zrn ± 14 Bingen metadacite gneiss, 01/19 Zrn 1529 ± 7 Andersen et al., 2004 Snarum granodiorite, HFG 1534 +9/-8 Andersen et al., 2004 Zrn Flosta charnockitic gneiss Zrn 1542 ± 8 Kullerud and Machado, 1991 Justøy tonalite, Justøy, JUS Zrn 1557 ± 24 Andersen et al., 2004 Justøy tonalite, Homborsund, HOM Andersen et al., 2004 Zrn 1569 ± 23 Gjerstadvatn tonalite, NES Zrn 1572 ±20 Andersen et al., 2004 (1) Zrn: zircon, Clm: columbite, Bdl: baddeleyite, Mnz: monazite, Ttn: titanite, Urn: uraninite, Eux: euxenite.

Table 10. Selection of U-Pb dates on magmatic events in Telemarkia

	0				
Lithology, Sample	(1)	(2)	Mineral (Ma)	- Age	Reference
	(1)	(2)	(Ivia)		
Rymteland pegmatite	R	Urn	914	±6	Pasteels et al., 1979
Egersund-Ogna anorthosite, margin 75-32	R	Bdl	915	± 4	Schärer et al., 1996
Vehuskjerringa granite, 0724061	Т	Ttn	918	±7	Andersen et al., 2002 a
Tellnes dyke, ilmenite norite, T2	R	Zrn	920	± 3	Schärer et al., 1996
Egersund-Ogna anorthosite, EO1	R	Zrn	929	± 2	Schärer et al., 1996
Farsund charnockite, PA70A	R	Zrn	930	ca.	Pasteels et al., 1979
Tellnes dyke, quartz mangerite, 849	R	Zrn	931	±5	Schärer et al., 1996
Hidra monzonorite, charnockite dyke	R	Zrn	931	± 10	Pasteels et al., 1979
Helleren anorthosite, 75-65	R	Zrn	932	±3	Schärer et al., 1996
Ana-Sira anorthosite, 92-21	K	Zrn	932	±3	Scharer et al., 1996
Venuskjerringa granite	I T	Zrn	934	±5 +20	Danigren et al., 1990 b
Toudal granita	і т	WIIIZ Zwp	939	± 20 ± 10	Andersen et al., 2002 a
Respectively granite	т Т	Zm	940	± 10 ± 10	Andersen et al. 2002 a
Lyngdal granodiorite La68A-Pa69K	P	Zrn	940	±19 +5	Pasteels et al. 1979
Holum granite 98BN21D	R	Zrn	957	+7	Bingen et al submitted
Sæbyggienut granite	R	Zrn	959	± 7 $\pm 50/-32$	Andersen et al. 2002 a
Byklom granite	S	Zrn	970	+14/-18	Andersen et al., 2002 a
Høvring granite	Ť	Zrn	971	+63/-34	Andersen et al., 2002 a
Knaben Mo ore, granitic gneiss, B01028	R	Mnz	1014	+7	Bingen et al., unpublished
Fennefoss augen gneiss	T	Zrn	1031	±2	Pedersen and Konnerup-Madsen, 2000
Mykleås diorite	Т	Zrn	1034	±2	Pedersen and Konnerup-Madsen, 2000
Charnockite, NR19A	R	Zrn	1035	±6	Möller et al., 2002
Fennefoss augen gneiss, B613	Т	Zrn	1035	+2/-3	Bingen and van Breemen, 1998 a
Rosskreppfjord granite	R	Zrn	1036	+23/-22	Andersen et al., 2002 a
Charnockite, NR17C	R	Zrn	1037	±16	Möller et al., 2002
Pegmatite leucosome, NR16A	R	Zrn	1039	± 11	Möller et al., 2003
Augen gneiss, NR2B	R	Zrn	1039	±7	Möller et al., 2002
Grt migmatite gneiss, NR12E	R	Zrn	1046	±12	Möller et al., 2003
Feda augen gneiss suite, Mandal, B206	R	Zrn	1049	+2/-8	Bingen and van Breemen, 1998 a
Feda augen gneiss suite, Veggja, B642	R	Zrn	1051	+2/-8	Bingen and van Breemen, 1998 a
Feda augen gneiss suite, Feda, B113	R	Zrn	1051	+2/-8	Bingen and van Breemen, 1998 a
Feda augen gneiss suite, Liland, B195	R	Zrn	1051	+2/-4	Bingen and van Breemen, 1998 a
Morkheia monzonite suite, M220	Т	Zrn	1134	±2	Heaman and Smalley, 1994
Gunnarstul granite gneiss	T	Zrn	1134	±21	Andersen et al., 2002
Heddal gp, Skogsåa porphyry, TA992	Т	Zrn	1145	±4	Laajoki et al., 2002
Eiddal granite gneiss, N95-65	Т	Zrn	1146	+/-5	Bingen et al., 2003
Hesjábutind gabbro	T	Zrn	1146	±2	Dahlgren et al., 1990 a
Høydalsmo gp, Dalaa porphyry, 830KLN	I T	Zrn	1150	±4	Laajoki et al., 2002
Hagiebu granite gneiss, N95-115	I T	Zrn Zwa	1155	±2	Legisli et al. 2003
Offefiell on Liesdelevetnet normhury 002KLN	і т	Zm	1155	±2 ±2	Laajoki et al., 2002
Hidderskog metacharpockite B308	I D	Zrn	1150	<u>+</u> 5	Zhou et al. 1995
Sarkievatn fm. metarhyolite B9825	Т	Zrn	1159	±5 ±/_8	Bingen et al. 2003
Vennesla augen gneiss B603	T	Zrn	1159	+61/-21	Bingen and van Breemen 1998 a
Nore gn Rødberg rhvodacite B9840	T T	Zrn	1169	+01/-21	Bingen et al. 2003
Flåvatn granite gneiss	Т	Zrn	1184	+7/-5	Dahlgren et al. 1990 b
Gierstad augen gneiss M5	Ť	Zrn	1187	+2	Heaman and Smalley 1994
Drivheja granite gneiss, M200	T	Zrn	1205	+9	Heaman and Smalley, 1994
Trossovdal fm, Nvastøl metarhvolite	S	Zrn	1259	±2	Brewer et al., 2004
Trossovdal fm, Nvastøl metarhvolite, B9817	S	Zrn	1260	±8	Bingen et al., 2002
Breive gp, Hovden metarhyolite, B9824	S	Zrn	1264	± 4	Bingen et al., 2002
Breive gp, quartz porphyry, B9818	S	Zrn	1275	± 8	Bingen et al., 2002
Iveland-Gautestad metagabbro	Т	Zrn	1279	±3	Pedersen and Konnerup-Madsen, 2000
Tinn granite, 0831962	Т	Zrn	1476	±13	Andersen et al., 2002 c
Lyngdal granite gneiss, Pa66R	R	Zrn	1486	ca.	Pasteels and Michot, 1975
Rjukan Gp, Myrstul rhyolite dyke	Т	Zrn	1502	± 1	Dahlgren et al., 1990 b
Grotte suite, tonalite -quartz diorite	Т	Zrn	1509	+19/-3	Ragnhildstveit et al., 1994
Rjukan Gp, Runhellohovet metarhyolite	Т	Zrn	1510	ca.	Dahlgren et al., 1990 b
Mårsbrot granite gneiss	Н	Zrn	1649	+33/-19	Ragnhildstveit et al., 1994

T: Telemark sector, H: Hardangervidda sector, S: Suldal sector, R: Rogaland-Vest Agder sector
 Zrn: zircon, Clm: columbite, Bdl: baddeleyite, Mnz: monazite, Ttn: titanite, Urn: uraninite, Eux: euxenite.