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ABSTRACT: Aquatic organisms rely on microbial symbionts for coping with various challenges
they encounter during stress and for defending themselves against predators, pathogens and para-
sites. Microbial symbionts are also often indispensable for the host’s development or life cycle com-
pletion. Many aquatic ecosystems are currently under pressure due to diverse human activities that
have a profound impact on ecosystem functioning. These human activities are also ex pected to alter
interactions between aquatic hosts and their associated microbes. This can directly impact the
host’s health and — given the importance and widespread occurrence of microbial symbiosis in
aquatic systems — the ecosystem at large. In this review, we provide an overview of the importance
of microbial symbionts for aquatic organisms, and we consider how the beneficial services provided
by microbial symbionts can be affected by human activities. The scarcity of available studies that
assess the functional consequences of human impacts on aquatic microbial symbioses shows that
our knowledge on this topic is currently limited, making it difficult to draw general conclusions and
predict future changes in microbial symbiont−host relationships in a changing world. To address
this important knowledge gap, we provide an overview of ap proaches that can be used to assess the
impact of human disturbances on the functioning of aquatic microbial symbioses.

KEY WORDS:  Host−symbiont interactions · Aquatic microbial symbioses · Mutualism ·
 Anthropogenic disturbances
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1.  INTRODUCTION

A large fraction of ecological interactions within an
ecosystem are symbiotic, which can be defined as a
phenomenon in which dissimilar organisms live
together (De Bary 1879). Although the term symbio-
sis is mostly used in the context of mutualistic or com-
mensalistic interactions between 2 species that live
in close contact for a substantial amount of time, it
encompasses a whole spectrum of outcomes, includ-
ing parasitism. Furthermore, the outcome of a sym-
biosis between 2 species is not fixed, and both the
strength and direction (positive, neutral or negative)
of the interaction can change over time and/or shift
depending on the context (Daskin & Alford 2012).
Symbiosis can either be obligate, where one or both
partners cannot survive without the other, or it can
be facultative, with both partners able to survive
independently outside of the symbiosis.

Microbial symbiosis refers to the phenomenon
where, in general, a larger organism (host) is colo-
nized by smaller unicellular microorganisms (sym-
bionts). In aquatic environments, a wide diversity of
eukaryote, bacterial and archaeal phyla engage in
microbial symbiosis, either as host or symbiont
(Grossart et al. 2013). Microbial symbionts can live as
endosymbionts within the cells or as specialized or-
gans of the host. However, many microbial symbionts
colonize the surface of epithelial tissues such as the
gut mucosa or are externally associated with the host,
such as those growing in the phycosphere of micro-
algae (Zoccarato & Grossart 2019). The assembly of
microorganisms found on a host is referred to as the
host-associated microbiota, and they form — in com-
bination with their specific habitat and biological ac-
tivity — the micro biome (sensu Berg et al. 2020;

Fig. 1). This commonly used microbiome definition,
however, is not fixed and often varies depending on
the referenced source. There has been increased
 research interest in the host-associated microbiota,
facilitated through new DNA sequencing technolo-
gies, which has revealed that many host organisms
support highly diverse communities of microbial
symbionts (Ley et al. 2008, White et al. 2016). In this
review, we discuss both specialized endosymbionts
and the broader host-associated microbiota, as we
expect some parallels in how they interact with the
host and how they are affected by environmental
change. We only focus on microbial symbionts that
provide — at least under some circumstances — a
benefit to the host.

Most aquatic organisms start interacting with
micro bial symbionts from their birth, and sometimes
even before (Bates et al. 2006, Nyholm 2020). Further-
more, aquatic organisms acquire bacteria from the
environment throughout their life cycle, making the
microbiota develop concomitantly with the host’s
chronological development. For several host organ-
isms, it has also been shown that they exert control
over the presence or abundance of specific symbionts,
often favouring beneficial symbiont strains (Rawls et
al. 2006, McFall-Ngai 2014, Tasiemski et al. 2015,
Stock et al. 2019a). These processes often en sure that
the microbial community provides the necessary
functions throughout the host’s life cycle (Sampson &
Mazmanian 2015, Dominguez-Bello et al. 2019). Mi-
crobiota can be acquired from conspecifics through
maternal transmission or other forms of interactions,
or they can be acquired through colonization from the
available pool of environmental microorganisms
(Funkhouser & Bordenstein 2013). The mode of trans-
mission is a key element in eco-evolutionary host−

symbiont dynamics and is correlated
with symbiont function and degree of
specialization (Macke et al. 2017b).
Many (especially aquatic) organisms
ob tain their microbiota through hori-
zontal transmission, and the degree of
exposure to environmental sources of
microorganisms often plays a major
role in determining microbiota assem-
blies (Adair & Douglas 2017). Interme-
diate modes, whereby symbionts from
the parents are horizontally transmit-
ted to their offspring, have also been
ob served (Ebert 2013, Björk et al.
2019). Vertically transmitted symbi -
onts, which are transferred with high
fidelity from the mother to the offspring
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A B C

Fig. 1. Examples of aquatic host−symbiont associations. The host (largest organ-
ism, grey) with its symbionts (unicellular eukaryotes, Archaea and Bacteria,
coloured). We define the symbionts as the microorganisms living in the host or
externally associated with it. Well-studied examples of host− symbiont associa-
tions (orange) include (A) Daphnia magna and its gut microbiota, (B) Euprymna
scolopes and the bioluminescent bacterium Vibrio fischeri and (C) Acropora spp.

and the eukaryotic algae Symbiodinium spp.
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before birth, tend to resemble organelles, and their
presence often has higher relevance for the host’s fit-
ness (Bright & Bulgheresi 2010, Fisher et al. 2017). In-
terestingly, aquatic host organisms seem to depend
less on vertical transmission than terrestrial hosts
(Russell 2019).

It has become clear that, for many organisms, the
composition of their symbiont community has a major
influence on various physiological processes and, ul-
timately, overall health. Variation in the gut micro-
biota composition is known to be caused by complex
interactions between a range of factors such as envi-
ronment, diet, age and medication (Falony et al. 2016,
Callens et al. 2020). Alterations in microbiota commu-
nity composition can have negative effects on the
host and can lead to a so-called ‘dysbiosis’ linked to a
variety of diseases, but the causality of this variation
on host health is often poorly understood (Flandroy et
al. 2018). In contrast, hosts can also be equally
healthy when harbouring quite different microbiota,
indicating that there is often a certain degree of func-
tional redundancy between symbiont species or com-
munities (Moya & Ferrer 2016, Callens et al. 2018).

Many aquatic ecosystems are currently under pres-
sure due to diverse human activities such as land-use
change, hydrological alterations to water bodies, pol-
lution, deep-sea mining and commercial fishing. In
addition, the effects of greenhouse gas emissions are
expected to increasingly impact aquatic systems
through climate change and ocean acidification
(Doney et al. 2020). Although many  re search efforts
are currently being undertaken to understand the po-
tential impact of human activity on aquatic ecosystems
and find ways to mitigate them, knowledge on the im-
pact of human activity on microbial symbioses is
scarce (Evariste et al. 2019, Timmis et al. 2019). This
impact is, however, expected to have profound effects
on aquatic ecosystems given the exceptional impor-
tance of microbial symbiosis for the health of many
aquatic organisms (Cavicchioli et al. 2019). Effects of
aquatic symbiotic interactions often extend far beyond
the involved partners and can provide functions that
are fundamental to whole aquatic ecosystems, such as
energy provision to coral reefs (Muscatine 1990) and
deep-sea hydrothermal vent communities (Jannasch
& Mottl 1985), detoxification of seagrass bed sedi-
ments (van der Heide et al. 2012) or nutrient cycling in
the water column, which can greatly affect primary
production (Seymour et al. 2017).

The aim of this review is to assess the potential im -
pact of human disturbances on interactions be tween
aquatic organisms and their microbial symbionts,
with a special focus on the consequences for the hosts’

health. In Section 2 (‘Importance of the microbiome
for aquatic organisms’, summarized in Fig. 2A) we
provide an overview of the importance of microbial
symbionts for coping with various challenges encoun-
tered by aquatic organisms. We focus on resource ac-
quisition, physiological stress, predation, pathogens,
parasites and host development. In Section 3 (‘Effects
of anthropogenic disturbance on host− symbiont inter-
actions’, summarized in Fig. 2B and Table 1), we con-
sider how the beneficial services pro vided by micro-
bial symbionts can be affected by various types of
human impacts on aquatic ecosystems: eutrophica-
tion, global warming, salinity changes, pollution and
antibiotics. In Section 4 (‘Perspectives’), we highlight
the importance of including host−  symbiont interac-
tions when assessing the impact of human distur-
bances on aquatic ecosystems. We also identify some
important knowledge gaps concerning the effect of
human disturbances on the functioning of aquatic mi-
crobial symbioses and indicate how these knowledge
gaps might be addressed in future studies.

2.  IMPORTANCE OF THE MICROBIOME FOR
AQUATIC ORGANISMS

2.1.  Role of the microbiome in host development

Microbial symbionts have often been found to be
essential for the development of multicellular aquatic
hosts. Many hosts receive growth factors and vita-
mins required for their development from their
microbiota (Sokolovskaya et al. 2020). Sea lettuce
Ulva mutabilis, for example, requires multiple regu-
latory factors produced by its associated bacteria to
develop into a ‘blade’ with rhizoids (Provasoli 1958,
Wichard et al. 2015). In the absence of bacteria, sea
lettuce develops into callus-like colonies consisting
of undifferentiated cells. Several aquatic metazoan
larvae (Porifera, Cnidaria, Acoelomorpha and Mol-
lusca) require bacteria for their settlement (Tran &
Hadfield 2011, Sneed et al. 2014, Fieth et al. 2016)
whilst the presence of dinoflagellates belonging to
the Symbiodinaceae seems to be required for
 successful metamorphosis in multiple marine organ-
isms (Mies et al. 2017). In the sponge Amphimedon
queens landica, a bacterial symbiont belonging to the
order Chromatiales supplies the amino acid L-argi-
nine, which is essential for the sponge larvae to suc-
cessfully settle and metamorphose (Fieth et al. 2016).
Zebrafish Danio rerio display incomplete develop-
ment and im paired function of their gastrointestinal
tract in the absence of gut microbiota. This can, how-
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ever, be reversed by inoculating them with their con-
ventional microbiota, providing direct evidence for
the role of the gut microbiota in gastrointestinal tract
development (Bates et al. 2006). Furthermore, exper-
imental evidence suggests that the microbiota is also
re quired for a normal early life neurobehavioral
development in zebrafish (Phelps et al. 2017).

Although less studied, associated microbiota can
also play a role in the life cycle completion of unicel-
lular aquatic hosts. This has been shown for the dia -
tom Seminavis robusta, where its associated bacteria
are known to affect sexual reproduction. They do this
through modulation of the host’s production of the
sexual attraction pheromone diproline, which influ-
ences physical pairing of compatible cells and subse-
quent gametogenesis (Cirri et al. 2019).

2.2.  Role of the microbiome in obtaining resources

Obtaining sufficient resources for growth, repro-
duction and meeting daily energy demands poses an

important challenge for all aquatic organisms. To
cope with this challenge, many aquatic organisms
rely on microbial symbionts that can either provide
their host with organic carbon derived from primary
production or with essential nutrients, enhance food
digestion or help attract prey.

Autotrophic microbial symbionts often directly
provide their aquatic host with energy derived from
solar radiation (photosynthetic symbionts; Smith et
al. 1969) or oxidation of electron donors (chemoauto-
trophic symbionts; Jannasch 1985). This relationship
can result in a reduced dependency on external food
resources for the host and may even result in an in se
heterotrophic host obtaining all its required carbon
from symbiotic primary producers (e.g. Hinzke et al.
2019). Symbiotic associations with photosynthetic
microorganisms are widespread in the photic zone of
aquatic environments. The endosymbiosis of the uni-
cellular dinoflagellate Symbiodinium with cnidarian
corals is a well-studied example of such an associa-
tion (Freudenthal 1962). Symbiodinium provides
oxy gen and organic compounds to the coral and, in
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Fig. 2. Schematic depiction of beneficial services provided by microbial symbionts and the potential impact of human activities
on the interaction between aquatic hosts and their microbiota. (A) Important functions of the microbiota in pristine systems, in-
cluding (from top, clockwise) defence against external toxins, provision of secondary metabolites, acquisition of resources,
production of toxins, host development, predation defence, pathogen defence and osmoregulation. (B) Anthropogenic distur-
bances that can affect the host’s microbiome, including (red arrows from top, clockwise) synthetic toxins, micro- and nano-
plastic pollution, altered habitat structure (i.e. channelling of water bodies), increased abundance of antibiotic resistant and
pathogenic microorganisms and increased temperature. The potential impacts of disturbing the microbiome on the host’s
health are indicated by grey arrows (from top, clockwise): reduced resource acquisition, increased pathogenic infections, 

lower toxin expulsion or degradation and reduced osmoregulation
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turn, receives inorganic nutrients and protection
from the host (Gordon & Leggat 2010). Other well-
studied associations include the freshwater cnidarian
Hydra with the green algae Chlorella (Ye et al. 2020),
an association known since the 1920s (Goetsch 1924),
and the sacoglossan sea slug Elysia chlorotica with
the stramenopile algae Vaucheria litorea (West 1981,
Chan et al. 2018). The latter association differs from
the former since the host does not retain viable sym-
bionts but merely the algal plastids. Many protists
also harbour eukaryotic or prokaryotic microalgal
symbionts that provide their host with photosyn-
thates (Stoecker et al. 2009, Decelle et al. 2015, Leles
et al. 2017). Furthermore, these photosynthetic sym-
bionts often provide their host with additional bio-
chemical functions (Nowack & Melkonian 2010). For
instance, some foraminiferans host diatoms or dino-

flagellates, from which they obtain photosynthates,
and simultaneously host cyanobacteria, which pro-
vide photosynthesis-dependent nitrogen (N) fixation
(Lee 2006, Prazeres & Renema 2019).

Aquatic organisms that acquire energy from asso-
ciated chemoautotrophic microorganisms are mostly
found around deep-sea vents (Dubilier et al. 2008).
Several tube-dwelling annelids nutritionally associ-
ate with aerobic methane-oxidizing bacteria (Gof-
fredi et al. 2020), and the giant hydrothermal vent
tube worm Riftia pachyptila relies entirely on sulfide-
oxidizing chemoautotrophic microorganisms for nu -
trition (Hinzke et al. 2019). Symbiont-hosting vesi-
comyid clams can take up hydrogen sulfide from the
sediment through their foot, and thioautotrophic bac-
teria that live in the gills of the clams can utilize this
hydrogen sulfide as the main energy source (Lan et
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Anthropogenic disturbance     Functional impact of disturbance                                   Host         References

Changes in nutrient                 Reduced calcification rates                                             Coral        van Oppen & Blackall (2019)

availability/eutrophication      Increased invasion of opportunistic pathogens            Coral        Voss & Richardson (2006), 
                                                                                                                                                           Gochfeld et al. (2012), 

                                                                                                                                                             Bourne et al. (2016)

                                                  Dysbiosis of skin microbiota                                            Fish         Krotman et al. (2020)

                                                  Increase in beneficial bacteria                                        Fish         Xie et al. (2011), Dong et al. (2013)

Global warming                        Changes in the microbiome metabolism                       Frog         Fontaine & Kohl (2020)

                                                  Changes in digestive performance of the host        Salamander  Fontaine et al. (2018)

                                                  Reduced exchange of symbiont-derived                      Coral        Baker et al. (2018)
                                                  photosynthates

                                                  Adaptation of symbionts to higher temperature          Squid        Cohen et al. (2019)
                                                  and increased bioluminescence

                                                  Increased susceptibility to disease                               Bivalve      Li et al. (2019)

Anthropogenic structures        Increase in epifauna and potential pathogens              Kelp         Marzinelli et al. (2009, 2018)

Salinity changes                       Increased osmolyte production, sulphur                       Coral        Röthig et al. (2016)
                                                  oxidation and nitrogen fixation

                                                  Reduced digestion of algal diet                               Brine shrimp  Nougué et al. (2015)

                                                  Changes in digestive and osmoregulatory                   Snail        Kivistik et al. (2020)
                                                  capacity

Chemical pollution                   Increase in xenobiotic biodegradation capacity         Bivalve      Milan et al. (2018)

                                                  Reduced body weight                                                      Fish         Kan et al. (2015)

Antibiotics                                 Changes in ecological interactions within                Water flea    Callens et al. (2018)
                                                  microbiota which affect host growth rates

                                                  Reduced fitness under poor dietary conditions        Water flea    Akbar et al. (2020)

                                                  Increased body weight and altered liver function         Fish         Keerthisinghe et al. (2020)

                                                  Increased mortality when challenged with                   Fish         Zhou et al. (2018)
                                                  a pathogen

                                                  Changes in host development                                         Fish         Yu et al. (2020)

                                                  Impaired intestinal morphology, permeability              Fish        Limbu et al. (2018)
                                                  and dysbiosis

Table 1. Potential functional impacts of anthropogenic disturbances on host−symbiont interactions
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al. 2019). Cold seep sponges from the genus Sube -
rites receive energy from their archaeal symbionts,
which carry out ammonia oxidation and carbon fixa-
tion within the sponge (Tian et al. 2017).

Gut microbiota play a vital role in food digestion for
heterotrophic organisms. This holds true for many
aquatic organisms, ranging from invertebrates such
as crustaceans (Harris 1993, Callens et al. 2016, Holt
et al. in press) to fishes (Egerton et al. 2018) and
whales (Miller et al. 2020). For some organisms, bac-
teria provide essential enzymes to digest complex
food sources. This is, for instance, the case in teren-
dinid wood-boring bivalves — known as ship-worms
— who depend on their associated bacteria to suc-
cessfully digest wood (Sabbadin et al. 2018). Hetero-
trophic organisms also often rely on their gut micro-
biota to supply them with essential vitamins (Putnam
& Goodman 2020).

Many aquatic phototrophs rely on their associated
microorganisms to enhance the uptake of limited nu-
trients or to get access to nutrient resources that are
otherwise unavailable to them. Through reminerali-
sation and respiration, heterotrophic bacteria regen-
erate carbon dioxide out of leaked photosynthates,
thereby facilitating nutrient circulation and increas-
ing carbon availability for the host (Christie-Oleza et
al. 2017). Algae-associated bacteria in crease bio -
availability of iron through siderophore production
(Amin et al. 2009, Kurth et al. 2019), whilst N2-fixing
cyanobacteria, often as endosymbionts in micro -
algae, provide N in return for photosynthetically
fixed carbon from the host (Villareal 1992, Foster &
Zehr 2019). In addition to specific growth factors
such as the auxin phytohormone indole-3-acetic acid
(Seyedsayamdost et al. 2011, Amin et al. 2015), het-
erotrophic bacteria supplement various algae with
vitamins (Croft et al. 2005, Sokolovskaya et al. 2020),
complementing the host’s nutritional needs.

An additional mechanism through which microbial
symbionts can provide their heterotrophic host with
food is by enhancing their capability to catch prey.
This is the case in anglerfish, who host biolumines-
cent bacteria belonging to the genus Photobacterium
in a light organ at the tip of their ‘fishing rod’ where
they produce the necessary light to detect or attract
prey (Hellinger et al. 2017, Michiels et al. 2018).

2.3.  Role of the microbiome in dealing with
 physiological stress

Harsh environmental conditions can induce pro-
nounced physiological stress in aquatic organisms.

Although the underlying mechanisms are not always
evident, case studies suggest that associated micro-
biota can play a relevant role in reducing physiolog-
ical stress in their host (White & Torres 2009).

Several unicellular aquatic hosts are known to gain
protection against harmful solar radiation through
their microbial symbionts. In the ciliate Paramecium
bursaria, the presence of algal symbionts can reduce
photo-oxidative stress caused by high UV radiation,
most likely through the activity of antioxidants pro-
duced by the symbiotic algae countering reactive
oxygen species production (Hörtnagl & Sommaruga
2007). In the marine benthic ciliate Maristentor dino -
ferus, mycosporine-like amino acids produced by a
symbiotic Symbiodinium are also known to minimize
damage from exposure to solar UV radiation (Som -
ma ruga et al. 2006). Furthermore, endosymbiotic
Symbiodinium in corals are known to gain protection
not only against light but also thermal stress from
their associated bacteria that produce the carotenoid
zeaxanthin, which potentially mitigates the effect of
environmental stress due to its antioxidant activity
(Motone et al. 2020).

Many heavy metals are essential micronutrients for
aquatic organisms but can become highly toxic at
higher concentrations (Morel & Price 2003). A ple -
thora of host-associated bacteria have been found to
carry heavy metal resistance factors on mobile
genetic elements and could indirectly confer heavy
metal resistance to the host (Selvin et al. 2009,
Chaturvedi et al. 2015). Bacteria associated with the
green alga Enteromorpha compressa demonstrated a
high copper tolerance and were suggested to play a
role in reducing the negative impact of copper on the
algae (Riquelme et al. 1997). Similarly, increased cop-
per tolerance was observed in the cnidarian Hydra
when it was associated with microalgal symbionts
(Karn ta nut & Pascoe 2005). However, the exact
mechanisms by which the symbionts increase copper
tolerance in their host were not evident. The mussel
Bathymodiolus sp., living in metal-rich hydrothermal
vent environments, harbours symbiotic bacteria that
can absorb metal ions and subsequently excrete the
metals in particulate forms, thereby detoxifying
heavy metals for their host (Hardivillier et al. 2004).
Kayath et al. (2019) showed that intestinal bacteria
isolated from guppy fish living in hydrocarbon- and
trace metal-contaminated wastewater could tolerate
trace metals such as Hg, Co, Zn and Pb to a higher
degree. Additionally, many of these bacteria were
able to degrade gasoline or diesel fuel hydrocarbons.
These studies indicate that the associated microbiota
potentially have an important role in mitigating the
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ef fects of various forms of environmental stresses
such as pollution in many aquatic organisms.

The associated microbiota can also protect the host
against physiological stress induced by secondary
compounds present in the food. For example, in the
water flea Daphnia magna, tolerance to the toxic
cyanobacterium Microcystis aeruginosa is mediated
by its gut microbiota (Macke et al. 2017a). Moreover,
cyanobacterial tolerance was shown to be dependent
on multiple microbial interactions within the D.
magna host (Boudry et al. 2020). Given that toxin
production is commonly found in various freshwater
and marine microalgae that cause harmful algae
blooms, symbiont-mediated protection against these
toxins might be important for many aquatic hosts.

Microbial symbionts have also been shown to pro-
vide protection against osmotic stress in several
hosts. In response to high salinity levels, the algal
sym biont Symbiodinium produces high levels of the
osmolyte 2-O-glycerol-α-d-galactopyranoside (flori-
doside), thereby increasing the capacity of the coral
to cope with the effects of osmotic stress (Ochsen -
kühn et al. 2017). For the seaweed Ectocarpus, bacte-
ria are essential to make the switch from marine to
freshwater conditions. Without its bacteria, the algal
host does not survive the transition to freshwater,
indicating that bacteria can provide essential func-
tions to mitigate the negative effects of salinity
changes (Dittami et al. 2016).

2.4.  Role of the microbiome in the host defence
against natural enemies

Aquatic organisms have to cope with various natu-
ral enemies in their environment, including preda-
tors, grazers and parasites. As a consequence, many
aquatic organisms have symbiotic interactions with
microorganisms that protect them against these ene-
mies. Defensive symbioses exhibit a variety of mech-
anisms through which the host gains protection
against its natural enemies (Clay 2014).

Defensive symbioses against predators and grazers
can be mediated through symbiont-derived secondary
metabolites that render the host unpalatable or toxic.
This mechanism is well known from sponges and
tuni cates, which rely heavily on chemical de fences
(Flórez et al. 2015). For example, the dictyoceratid
sponge Dysidea herbacea is host to the intracellular
symbiotic cyanobacterium Oscillatoria spongeliae
that produces various halogenated compounds such
as dysideathiazole, which are fish-feeding deterrents,
protecting the sponge against predation (Ridley et al.

2005). Recently, it was shown that Haliclona sp.
sponges have intracellular renieramycin-producing
bacteria with a strongly reduced genome in special-
ized chemobacteriocytes, indicating that both partners
evolved a highly specialized symbiosis (Tianero et al.
2019). These renieramycins are known to be highly
cytotoxic and are hypothesized to protect the sponge
against predators and pathogens. Tetrodotoxin (TTX)
is a neurotoxin that is frequently used by many
aquatic organisms to protect themselves against pre-
dation. Organisms containing TTX span a wide range
of taxonomic groups such as red algae, pufferfish,
blue-ringed octopuses, crabs, starfish, flatworms and
amphibians (Jal & Khora 2015) and have evolved re-
sistance through modification of their sodium chan-
nels (Venkatesh et al. 2005, Vaelli et al. 2020). Al-
though this toxin can be accumulated by feeding on
TTX-containing prey, several studies have shown the
importance of symbiotic TTX-producing bacteria for
host defence (e.g. Noguchi et al. 1986, Vaelli et al.
2020). Interestingly, this toxin is produced by a wide
array of bacterial phyla (Actinobacteria, Bacteroides,
Firmicutes, Proteobacteria) associated with various
host organisms (Jal & Khora 2015), which could ex-
plain its widespread occurrence as a defensive mech-
anism. In addition to relying directly on microbial
symbionts for protection, some animals depend on
symbioses be tween their prey and its symbionts for
chemical de fence. This relationship was recently
shown by Zan et al. (2019) for the sacoglossan sea slug
Elysia rufescens and the algae Bryopsis sp., which
both rely on the toxic lipopeptide kahalalide F for
chemical defence. Bryopsis sp. obtains this toxin by
housing symbiotic kahalalide-producing intracellular
bacteria. E. rufescens, in turn, relies on this symbiosis
to extract and sequester kahalalide F through feeding
on Bryopsis sp. that contain kahalalide-producing
symbionts. This example nicely shows that host−
symbiont interactions can have consequences that ex-
tend beyond the involved partners in their influence
on aquatic food webs and ecosystems.

Another mechanism for defensive symbiosis against
predators is through counter-illumination with the
purpose of host camouflage. Ventrally directed lumi-
nescence produced by symbiotic bacteria disrupts the
shadow of the host that is cast by light coming from
above, providing camouflage to avoid detection from
below. This type of symbiosis is found in several spe-
cies of squid and marine fish that host bacteria from
the Vibrionaceae family (Vibrio sp. or Photobacterium
sp.) in specialized light organs (Dunlap et al. 2007).
These bacteria are acquired from the environment,
and their hosts have evolved ways to select only ben-
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eficial symbionts to populate the light organ (McFall-
Ngai 2014). This interaction was shown to be struc-
tured through quorum sensing between the bacterial
strains (Verma & Miyashiro 2013). For several species
of squid and leiognathid fish, it has been shown that
the hosts can regulate the intensity, colour, angular
dis tribution and patterns of ventral light emission in
response to environmental light conditions by modi-
fying the tissues surrounding the light organ (McFall-
Ngai & Morin 1991).

A peculiar form of a microbial symbiosis that con-
fers protection against predation can be found in cil-
iates of the genus Euplotidium that live in tide pools
along rocky shores. A well-defined cortical band on
the dorsal surface of the ciliate host is often colonized
by bacterial episymbionts, referred to as epixeno-
somes, that belong to the genus Verrucomicrobia
(Petroni et al. 2000). After attachment to the host,
epixenosome cells differentiate themselves to form a
sophisticated extrusive apparatus that can eject a rib-
bon in response to external signals. It has been exper-
imentally shown that colonization by epixenosomes
effectively protects Euplotidium from ingestion by
the ciliate predator Litonotus sp. (Rosati et al. 1999).

The associated microbiota of aquatic organisms of-
ten play a crucial role in the host’s resistance or toler-
ance to pathogen infection (Kimura & Tomaru 2014,
Dheilly et al. 2015, Greenspan et al. 2019, Davoodi &
Foley 2020, Schellenberg et al. 2020, Portet et al.
2021). For instance, Huot et al. (2020) reported a con-
gruence of vector snails’ phylogeny and their associ-
ated microbiome, combined with variable suscepti-
bility between snail species and even populations of
the same species, suggesting that the snail’s micro-
biome might play a role in parasite resistance. Micro-
biota-induced pathogen resistance or tolerance has 3
underlying mechanisms: competition for resources
and space, production of antimicrobial substances
and stimulation of the host’s immune response
(Dheilly et al. 2015, Mallon et al. 2015, Knutie et al.
2017).

An example of colonization resistance through re -
source competition can be found in the associated
microbiota of the coral Acropora palmata. In this
host species, both the commensal microbiota and
the white-pox-causing pathogen Serratia marces -
cens are known to employ glycosidases and N-
acetyl-  glucosaminidase to utilize components pres-
ent in the coral mucus. Krediet et al. (2013) showed
that several members of the A. palmata microbiota
have the ability to inhibit the induction of these
catabolic enzymes in S. marcescens. This inhibition
gives the pathogen a competitive disadvantage

when growing in coral mucus, which results in re -
duced virulence.

Antimicrobials produced by the associated micro-
biota can also play a crucial role in the pathogen re -
sistance of the host. In the marine sponge Erylus
disco phorus, a large and diverse fraction of the asso-
ciated microbiota is known to produce antimicrobial
compounds (Graça et al. 2013). However, sometimes
the presence or absence of one specific bacterial
strain producing antimicrobial substances can deter-
mine pathogen susceptibility or resistance. For ex -
ample, the presence of the bacterium Janthinobac-
terium lividum in the cutaneous microbiota of the
mountain yellow-legged frog Rana muscosa leads to
a significantly reduced mortality as a consequence of
infections by the lethal fungus Batrachochytrium
dendrobatidis. This bacterial strain is capable of pro-
ducing the anti-chytrid metabolite violacein, effec-
tively reducing the chytrid pathogen burden on the
mountain yellow-legged frog (Harris et al. 2009).

The associated microbiome can also stimulate the
host’s immune response (Knutie et al. 2017, Murdoch
& Rawls 2019). Knutie et al. (2017) showed that early-
life disturbance of the bacterial communities associ-
ated with Cuban tree frog Osteopilus septentrionalis
tadpoles results in a significantly higher infection by
the parasitic worm Aplectana hamatospicula in
adulthood. In contrast, disturbance of the associated
bacterial communities of adult frogs did not result in
a higher parasitic burden. This study indicates that
the microbiota likely plays an important role in prim-
ing the immune system of juvenile frogs, protecting
the host from parasites later in life. In zebrafish lar-
vae, the immune response is boosted by an increase
in microbiota complexity, but can also be affected by
specific bacterial strains. By comparing germ-free to
conventional zebrafish larvae, it became apparent
that many of the immunity-related genes are micro-
biota-regulated (Murdoch & Rawls 2019).

It is worth noting that the diversity of the micro-
biota is often found to be positively correlated with
colonization resistance, although a specific mecha-
nistic explanation is often lacking. On the one hand,
such a pattern could be caused by competition, as
communities with high species richness occupy more
niches and hence are more resistant to invading
pathogens by leaving less space and nutrients avail-
able for the pathogen to exploit (Mallon et al. 2015).
On the other hand, it could be that key species pro-
viding resistance (e.g. through the production of
antimicrobial substances) are often missing in less
diverse communities. A positive correlation between
microbiota diversity and colonization resistance was
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observed in the European common frog R. tempo-
raria, which showed increased resistance to the
emerging Ranavirus with a more diverse skin micro-
biome (Harrison et al. 2019). When the microbiota
diversity in zebrafish is reduced through exposure to
the antibiotic olaquindox, they also become more
susceptible to infection by the pathogen Aeromonas
hydrophila (He et al. 2017).

3.  EFFECTS OF ANTHROPOGENIC
 DISTURBANCE ON HOST−SYMBIONT

 INTERACTIONS

3.1.  Eutrophication and shifts in oxygen
 availability and nutrient ratios

Altered nutrient availability is one of the greatest
disturbances for aquatic ecosystems globally. Exces-
sive inflow of nutrients, mainly phosphorus (P) and N
from different anthropogenic reservoirs, such as
wastewater and agriculture, is a key factor in the pro-
cess of eutrophication in lakes and coastal areas. The
enhanced primary production resulting from eutro -
phi cation, in turn, encourages microbial activity and
the consumption of dissolved oxygen in bottom
waters and benthic habitats. The consequent hypo xia
of these habitats is extremely destructive for aquatic
life (Diaz & Rosenberg 2008, Rousi et al. 2019). Micro-
bial responses to hypoxia are intimately tied to the
geochemistry, in both sediments and the water col-
umn. Mat-forming microbes are a macroscopic feature
of benthic marine ecosystems subjected to severe hy-
poxia. These mats are formed largely of filamentous
sulfide-oxidizing bacteria. Many protozoans and
metazoan animals live in association with mats of
mega- and macro-bacteria, including some eukary-
otes with symbiotic bacteria. A hypothesis is that
large mat-forming, sulfide-oxidizing bacteria de toxify
sediment by removing sulfide, and thus facilitate
metazoan habitation (Levin et al. 2009). Changing
temporal micro-environments with respect to oxygen
depletion at alternating locations has been shown to
exist, e.g. in sponges, and provides suitable conditions
for the activity of its anaerobic microbial symbionts,
fuelling the holobiont’s metabolism (Lavy et al. 2016).

Increasing inputs of anthropogenic N and CO2

from the atmosphere are also perturbing ocean nutri-
ent levels, generating a progressive shift towards P
or N limitation (Bindoff et al. 2019). Imbalanced car-
bon:nutrient ratios are known to strongly affect ani-
mal assimilation efficiencies, nutrient excretion,
growth and reproduction, whether nutrients are in

deficit or excess (Darchambeau et al. 2003, Laspou -
maderes et al. 2015, Zoccarato & Grossart 2019). Al -
though understudied relative to classic ecological
systems, it is reasonable to hypothesize that the
diversity of an organism’s microbiome might, at least
partially, be governed by nutrient availability. For
ex ample, patchiness in microbial communities in the
oligotrophic North Atlantic Ocean relies on microbial
associations with copepods as a source of nutrients
and shows synchronous changes with variability in
copepod nutritional content. As a consequence, bac-
terial communities associated with copepods in the
oligotrophic ocean may not face nutrient limitation to
the same extent as the surrounding free-living com-
munity (Shoemaker et al. 2020).

Changes in nutrient availability could also alter mi-
crobiome composition or functioning. Some organ-
isms, such as sponges, have a highly stable micro-
biome when changing from oligotrophic to eutrophic
conditions (Gochfeld et al. 2012, Simister et al. 2012,
Luter et al. 2014). The great functional diversity and
physiological plasticity of their microbiomes might
contribute to their high ability to survive under vari-
able environmental conditions (Baquiran & Conaco
2018). On the other hand, other aquatic organisms,
such as the cyanobacterium Trichodesmium sp.
(Frisch korn et al. 2017), larvae of the starfish Acan-
tasther (Carrier et al. 2018) or the benthic foraminife-
ran Amphistegina lobifera (Prazeres et al. 2017),
among others, were reported to have a dynamic mi-
crobiome composition in response to changing nutri-
ents. In all these cases, the plasticity of their micro-
biomes or the capacity to acquire different symbionts
may underpin their success in changing systems and
could represent an advantage in determining their
resilience under changing environmental conditions.

Other groups are less tolerant of nutrient fluctua-
tions. In corals, for example, an increase in N disrupts
the finely tuned equilibrium in their microbiome,
exacerbating the impact of increasing temperatures,
slowing down calcification (van Oppen & Blackall
2019) and promoting the invasion of opportunistic
pathogens (Voss & Richardson 2006, Gochfeld et al.
2012, Bourne et al. 2016). Zalewski et al. (2011) sug-
gested that the Daphnia microbial gut flora competes
with the host for P. Nutrient availability seems to
change the host’s microbiome communities and, in
turn, the microbiota (including pathogens) play a
role in how nutrients are used by the Daphnia host
(Duffy et al. 2012, Aalto et al. 2015, Reyserhove et al.
2017). Krotman et al. (2020) showed how sporadic
nutrient pollution events drove fish skin communities
to dysbiosis through the alteration of the microbiome
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bacterial groups reducing fish health. Macronutri-
ents seem to also influence the composition and
activity of intestinal microflora in fish. P and N sup-
plementation increased the bacterial diversity of the
gut microbiome, but in this case, with a trend to stim-
ulate beneficial bacteria (Xie et al. 2011, Dong et al.
2013).

3.2.  Global warming

The rise in global CO2 concentration since 2000 is
about 20 ppm decade−1 (NOAA 2021). As a result, the
Earth is heating up rapidly, yet is at a significant dis-
tance from thermal equilibrium due to the large flux
of thermal energy currently entering the world’s
water bodies (Huntingford et al. 2020). The increas-
ing water temperatures are decreasing oxygen solu-
bility and increasing respiration rates and therefore
amplifying the hypoxic conditions resulting from
eutrophication.

Changes in environmental temperatures can influ-
ence the host’s microbiome through direct effects of
temperature on the associated microbiota community,
or indirectly through temperature effects on the host
phenotype, which in turn influences the microbiota
(Kohl & Yahn 2016, Li et al. 2018, Fontaine & Kohl
2020). Shifts in the microbiota community composition
can arise through changes in the external microbial
pool to which hosts are exposed, and through host-
mediated differences (Fan et al. 2013, Seedorf et al.
2014, Sullam et al. 2018). Indeed, differences in the
effects of temperature on microbial community com-
position have been described under similar conditions
between genotypes of the same species (Sullam et al.
2018, Frankel-Bricker et al. 2020) and between
closely related species (Fontaine & Kohl 2020). Indi-
rect changes of the associated microbiota can occur
through modifications in active and passive selectivity
for particular microbes in the host and are expected
for several reasons (Nishi guchi 2000, Webster et al.
2008). Warming alters many aspects of ectotherm
physiology, such as immune function (Maniero &
Carey 1997) and gut transit time (van Marken Licht-
enbelt 1992), which can influence microbial commu-
nity structure (Hooper et al. 2012, Kashyap et al.
2013). Increased temperatures may also accelerate
host metabolic rates (Kirk et al. 2018), leading to an
increased host demand for carbon (carbohydrates)
compared to N (amino acids) (Bestion et al. 2019).
This was, for example, supported by enrichment in 2
of the 3 microbial carbohydrate metabolism pathways
and a general decrease in microbial amino acid me-

tabolism pathways under increased temperatures in
frogs (Fontaine & Kohl 2020). The changes in host me-
tabolism and physiology can destabilize associations
be tween hosts and microbial symbionts. For in stance,
in corals Orbicella faveolata, warming made the as -
sociated Symbiodinium parasitic, resulting in higher
retention of its photosynthates (Baker et al. 2018).

In general, increasing water temperatures do not
seem to affect microbial alpha diversity in a wide
range of aquatic organisms (e.g. the water flea Daph-
nia magna: Sullam et al. 2018, Frankel-Bricker et al.
2020; Lithobates frogs: Kohl & Yahn 2016, Fontaine &
Kohl 2020). Yet several exceptions have been docu-
mented where increased water temperatures re -
duced (e.g. Huyben et al. 2018, Li et al. 2018) or in -
creased (e.g. Li et al. 2019) the alpha diversity, both
of which may be associated with negative effects for
the host. A reduction of gut-associated bacterial taxa
may decrease the stability of the gut microbial com-
munities (Fan et al. 2013) and reduce the host’s resil-
ience under stressful conditions (Lozupone et al.
2012). For example, increasing water temperatures
caused the genus Reyranella, which plays a role in
immune function (Peng et al. 2019), to be largely
absent from the gut of the bullfrog L. catesbeianus
(Fontaine & Kohl 2020). Furthermore, in the sala-
mander Plethodon cinereus, the abundance of the
genus Janthinobacterium, which protects amphib-
ians against the fungal disease Chytridiomycosis, de -
creased under rising temperatures (Fontaine et al.
2018). An increased alpha diversity may also nega-
tively impact the host when it reflects proliferation of
opportunistic pathogens. For example, Li et al. (2019)
indicated that the increase in Vibrio and Arcobacter
under heat stress in the mussel Mytilus galloprovin-
cialis increased its susceptibility to diseases, thereby
contributing to increased mortality.

Elevated water temperatures typically alter the as -
sociated microbial community composition, as has
been documented for many organisms including
algae (e.g. Webster et al. 2011, Stratil et al. 2013),
aquatic invertebrates (e.g. mussels: Li et al. 2018, Li
et al. 2019; rotifers: Eckert et al. 2021; water fleas:
Sullam et al. 2018, Frankel-Bricker et al. 2020) and
vertebrates (e.g. fish: Huyben et al. 2018; frogs: Kohl
& Yahn 2016, Fontaine & Kohl 2020). For example,
the gut microbial communities of tadpoles of the
invasive bullfrog L. catesbeianus change more rap-
idly and have more temperature-dependent bacterial
functional pathways in response to higher tempera-
tures than those of the non-invasive green frog L.
clamitans (Fontaine & Kohl 2020). Such microbially
mediated mechanisms may contribute to invasive
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species being often more phenotypically plastic than
native species (Davidson et al. 2011, Houwenhuyse
et al. 2018).

Rapid evolutionary changes of the associated
microbiota in response to increased temperatures
might mitigate the negative effects of global warm-
ing experienced by the host. Vibrio fischeri evolved
an increased ability to colonize the Euprymna sco lo -
pes squid host in response to higher temperatures
resulting in an increase in bioluminescence (Cohen
et al. 2019). Studies on D. magna showed that host
clones from thermally different geographic re gions
harboured microbial communities that differed in
structure, despite being reared under similar lab
conditions for many years. However, the response in
the gut microbiome to an increased temperature was
similar for clones from different geographic regions,
and the water flea population was still an important
factor in explaining microbiome variation, indicating
the potential for rapid evolution (Frankel-Bricker et
al. 2020).

Next to the heating effect, the absorbance of en -
hanced CO2 concentrations causes acidification of
surface waters, which is particularly problematic for
calcifying organisms such as foraminifera, corals and
mussels (Orr et al. 2005). Corals growing close to a
natural CO2 seep hosted less symbiotic bacteria than
the same corals growing further from the seep (Mor-
row et al. 2015). In addition, bacteria linked with dis-
eases and stress seem to be more dominant in corals
growing at a reduced pH (Meron et al. 2011). Nega-
tive feedback as a result of changes in the associated
microbial community caused by acidification seems
to worsen the effects of increased CO2 concentrations
on corals. Other species might benefit from the
increased CO2 levels. The same study (Morrow et al.
2015) that compared corals growing close to seeps to
those growing at control sites also reported more
photosynthetic microbes in sponges growing near
the seeps, potentially providing the sponges with
 in creased nutritional benefits.

3.3.  Anthropogenic structures

Human interventions have changed residence time
in lotic systems and created entirely new lentic sys-
tems, including reservoirs and canals. Additionally,
many artificial structures such as windmill farms, oil
rigs and aquaculture farms provide hard substrates
for organisms to adhere to and shelter where previ-
ously there was none. Microorganisms can have a
potential role in their host’s adaptation to anthropo -

genically created habitats. They could do so by con-
ferring resistance in the host to heavy metals from
anti fouling agents used to coat the structures (see
Section 2.3) and extending the host’s niche to better
fit artificial local conditions. Overall, the im pact
of anthro po genic structures on the host- associated
micro biota has hardly been explored.

Man-made structures, such as riverbank reinforce-
ments and pier pilings, differ markedly from natural
substrates by having different physico-chemical
properties, orientation, shading etc. and generally
strongly impact biological communities (Ferrario et
al. 2016, Phillips & Prestie 2017, Reyne et al. 2021).
Due to their effects on environmental conditions and
biota, these structures can be expected to influence
the host-associated microbiota and their interactions
with the host (e.g. Jani & Briggs 2018). Marzinelli et
al. (2009, 2018) showed that the kelp Ecklonia radi-
ata growing on artificial pier-pilings was covered by
more epifauna, and more of its epiphytic bacteria
were associated with macroalgal diseases compared
to kelp growing on neighbouring natural rocky reefs.
Lower levels of light on the pier due to the shading of
the pilings were put forward as one of the probable
causes of the observed differences. Although the
kelp populations did not differ in photosynthetic
capacity, these results suggest a negative impact of
the artificial structures on the host. Artificial sub-
strates tend to provide suitable opportunities for
novel, often invasive, organisms to settle (Mayer-
Pinto et al. 2015, Ros et al. 2016). The same goes for
newly introduced bacteria, which can potentially
establish more easily on anthropogenic substrates
where there may be a lower biological diversity
(Amalfitano et al. 2015). Artificial substrates might
therefore provide opportunities for novel associa-
tions between hosts and microorganisms.

3.4.  Salinity changes

Salinization of freshwater environments is ex pected
due to the global rate of mean sea-level rise at an av-
erage rate of 3.2 ± 0.4 mm yr−1 since 1993 (Nicholls &
Cazenave 2010). In combination with re duced rainfall,
sea-level rise causes saltwater intrusion into coastal
freshwater environments, converting them to brackish
environments (Neubauer 2013). In addition, salt ap-
plication for de-icing of roadways has been recog-
nized as a major source of chloride ions to ground -
water, streams, rivers and lakes (Dugan et al. 2017).

Changes in salinity are likely to result in differences
in the abundance of key microorganisms (Herlemann
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et al. 2011), shifts in microbial metabolism (Neubauer
2013) and nutrient cycling (Marton et al. 2012). The
host’s internal environment can shift as a consequence
of salinity changes, which in turn may affect the mi-
crobiome structure. Taxonomy-based functional pro-
filing of the host-associated micro biota in the osmo -
conforming coral Fungia gra nu losa after long-term
increased salinity exposure resulted in a shift in the
bacterial community towards increased osmolyte pro-
duction, sulphur oxidation and N fixation (Röthig et
al. 2016). Also in osmoregulators, changes can be ex-
pected, e.g. when salmon move from freshwater to
saltwater, they drink continuously to counteract water
loss to the hyperosmotic environment, thereby in-
creasing the luminal alkalinity to that of the surround-
ing medium. Additionally, novel pathogens, microbes
and dietary items are encountered in the saltwater
environment, which suggests major changes and
unique profiles in the intestinal microbiota following
movement to saltwater (Dehler et al. 2017).

Depending on their salinity tolerance, strict fresh-
water bacteria may be extinguished while saline-
tolerant bacteria may survive and marine bacteria
could immigrate. Salinity shifts therefore also favour
habitat generalists with a broad salinity tolerance
(Székely & Langenheder 2014). Artemia survive at
very high salinity levels but have a strongly reduced
fitness at reduced salinity. Nougué et al. (2015)
showed that this reduction in fitness is caused by the
impact of salinity changes on the host’s gut micro-
biota. The gut microbiota, necessary for algal diges-
tion, was shown to grow better at high than at low
salinity, and its functionality might thus be compro-
mised at low salinity. Further evidence for the micro-
biota-mediated effect of salinity on host fitness was
provided by the observation that axenic Artemia do
not have reduced fitness at low salinity when feeding
on easily digestible food. Kivistik et al. (2020) artifi-
cially increased or decreased the salinity level in wa-
ter containing Theodoxus fluviatilis snails that origi-
nated from freshwater or mesohaline environments.
They found that an increase in salinity in the water
containing freshwater snails resulted in a strong
change in the associated bacterial community, and
typical marine bacteria became more pronounced in
the digestive tract. However, the composition of the
digestive tract microbiome of mesohaline snails did
not alter after either an increase or de crease in salin-
ity. Analysis of the functional profile of the digestive
tract microbiomes showed that mesohaline snails
have the ability to maintain the original bacterial
community with high cellulolytic potential and the
ability to produce osmolytes, while freshwater snails

were not able to compensate for the loss of functions
by a shift in the bacterial community (Kivistik et al.
2020). This finding suggests that changes in salinity
can result in compositional changes in the gut bacter-
ial community, which in turn changes its functional
profile and can have an effect on the host’s fitness.

3.5.  Chemical pollution

Anthropogenic activities such as food production
and industrial activity cause the release of various
chemicals into the environment that can have a con-
siderable impact on the biotic properties of natural
aquatic ecosystems. There is clear evidence that
anthropogenic chemical pollutants adversely affect
aquatic ecosystems through ecosystem destruction,
habitat modification, water chemistry alteration and
direct addition or removal of species (Malmqvist &
Rundle 2002, Schallenberg & Armstrong 2004,
Englert et al. 2013).

Chemical pollution with microplastics, silver nano -
particles, pesticides and heavy metals in aquatic
environ ments can also disturb the associated micro-
biota of aquatic hosts living in those environments.
For example, Milan et al. (2018) found that the
hepato pancreas microbiota composition of the Manilla
clam Ruditapes philippinarum was influenced by the
variation in overall chemical pollutant concentrations
in its environment. In addition, they observed an
over-representation of several pathways involved in
xenobiotic biodegradation in the microbiota, suggest-
ing a potential detoxifying action of the microbiome
that can have consequences for the host’s suscept -
ibility to environmental chemicals. Alterations in the
host-associated microbiota induced by chemical pol-
lution can, in turn, have further effects on host physi-
ology, growth and survival (Evariste et al. 2019).

Microplastics, defined as plastic debris smaller than
5 mm (Moore 2008), are a widespread environmental
pollutant in both freshwater and marine environments
(Welden & Cowie 2016). These microplastics can be
ingested by many aquatic animals and have been
found to negatively affect both phytoplankton and
fauna in aquatic ecosystems (Wang et al. 2019). Two
recent studies showed that exposure of zebrafish
Danio rerio to polystyrene microplastics has signifi-
cant effects on the phylum-level composition and
 diversity of its gut microbiota community (Qiao et al.
2019, Wan et al. 2019). Qiao et al. (2019) ob served
a decrease in Proteobacteria, while Fuso bacteria
 increased as a result of polystyrene exposure. Wan
et al. (2019) observed a decrease in Gamma proteo -
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bacteria and Bacteroidetes, while Firmi cutes signifi-
cantly increased. Both studies indicated that these
polystyrene-induced shifts in gut microbiota could be
associated with the observed dysbiosis causing gut
inflammation, metabolic disorders, oxidative stress or
neurotoxicity. Silver nano particles decreased Beta -
proteo bacteriales (mainly Curvi bacter and Undi bac -
te rium) in the microbiomes of the freshwater pla-
narian Schmidtea mediterranea (Bijnens et al. 2021).
These studies show that the presence of synthetic
 micro- and nanoparticles can have pronounced ef-
fects on host−microbiota interactions.

Pesticides commonly used in agriculture are found
to be widely present in aquatic ecosystems due to
runoff (Sánchez-Bayo et al. 2016). Kan et al. (2015)
found that exposure of goldfish Carassius auratus to
the pesticide pentachlorophenol (PCP) was associ-
ated with an increased abundance of Bacteroidetes,
especially members from the Bacteroides genus, and
a decreasing Firmicutes/Bacteroidetes ratio. The
abundance of 4 other gut microbial taxa was further-
more negatively correlated with this increase in Bac-
teroidetes. These PCP-induced changes in gut micro-
biota community structure were thought to play a
crucial role in the reduced body- and liver weight of
these fishes when exposed to PCP. In contrast, expo-
sure to pesticides does not necessarily always affect
microbiota communities or symbiotic interactions.
For example, Knutie et al. (2017) showed that expo-
sure of the Cuban tree frog Osteopilus septentrion-
alis to environmental concentrations of the herbicide
atrazine only had minimal effects on its associated
microbiota, and no effects on the host’s susceptibility
to infection with the chytrid fungus Batracho chy -
trium dendrobatidis.

Elevated concentrations of heavy metals are often
found in aquatic ecosystems due to runoff from min-
ing, agriculture or industrial waste. Dahan et al.
(2018) exposed larval zebrafish to environmental
con centrations of arsenic (between 10 and 100 ppb).
They found that even at the lowest concentration of
arsenic there were significant changes in the gut
micro biota community structure. Although the au-
thors suggested that arsenic exposure induced a dys-
biosis in the zebra fish microbiota, health conse-
quences of this shift in microbiota for the host were
not measured. Similarly, changes in gut microbiota
community composition were found when zebrafish
were exposed to lead (Xia et al. 2018). Here, the
 authors also suggested that the observed changes in
gut microbiota composition might impact the host’s
metabolism, although direct effects of lead exposure
on the host could not be excluded.

3.6.  Antibiotics

Antibiotics are commonly used to treat or prevent
bacterial infections in humans and animals, and traces
can be found in aquatic systems as a result of the
absence of (or incomplete) removal from wastewater
(Giger et al. 2003). Concentrations of these anti biotics
are in the range of ng or a few μg l−1, and it is consid-
ered even lower for coastal sea waters (Goth wal &
Shashidhar 2015). However, some studies report con-
centrations in the mg l−1 range for sulphonamides
(Bilal et al. 2020, Bojarski et al. 2020). At higher con-
centrations, antibiotics often have toxic or growth-
inhibiting effects, e.g. on Daphnia (Wollen berger et
al. 2000, Gorokhova et al. 2015) and fish (Bojarski et
al. 2020). Even at very low doses, antibiotics can
show effects on microbiota composition and diversity
in aquatic animals (Callens et al. 2018) as they have
been shown to act as signal molecules (Sengupta et
al. 2013). Such effects of individual antibiotics might
be more pronounced considering that the exposure
to such compounds is likely continuous and com-
posed of a highly variable cocktail of various anti -
biotics (Evariste et al. 2019). The actual impact of this
contamination on the microbiota of animals in nature
is unknown since few studies have tackled the effect
of this low-dose exposure, and many of them used
concentrations that are in the upper range or above
environmentally relevant ones. Here, we only dis-
cuss studies using <50 μg l−1 of antibiotics and their
re lated effects on microbiota. Yet all of the currently
available literature used only 2 model systems —
Daphnia or fish — which renders a generalization of
these results difficult.

The few available data suggest that the impact of
low-dose antibiotics on diversity and community
composition as well as the resilience of the host-asso-
ciated microbiota depend on both the antibiotic itself
and on the host: a long-term exposure of juvenile ze-
brafish to relatively low concentrations of tetra cycline
(1 μg l−1) showed a shift of the microbial community
and indicated an increase in microbiota diversity.
Bacterial taxa benefiting from the presence of the an-
tibiotic included Fusobacter, Firmicutes and Bactero -
idetes (Keerthisinghe et al. 2020). Consequently, an
increase in fish body weight which altered the liver
function was observed (Keerthisinghe et al. 2020).
Exposure to a slightly higher concentration of Rifam -
picin (25 μg l−1) for about 6 d resulted in a strong shift
in the composition of both skin and gut microbiota of
the western mosquitofish Gambusia affinis and a
strong decrease of microbial diversity and culturabil-
ity. Culturability of bacteria quickly increased during
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antibiotic exposure, indicating higher growth of the
selected resistant strains. However, neither skin nor
gut microbiota composition or diversity were resilient
to antibiotic disturbance and still showed highly al-
tered microbiota composition after 1 wk without an-
tibiotics. On the other hand, in a study where larval
fathead minnows Pimephales promelas were exposed
to low levels of Triclosan (100 ng l−1), the antibiotic
had an immediate effect on community composition
and diversity, but the gut community recovered from
this disturbance after 2 wk of antibiotic absence. The
different studies used different antibiotics, animals
and recovery times, thus more standardized experi-
ments would be needed to draw generalized con -
clusions on the resilience of the animal-associated
micro biota after antibiotic-induced disturbances.

Sometimes the effect of low-dose antibiotics is not
visible at the level of the microbiota composition.
When zebrafish were exposed for 2 mo to oxytetracy-
cline at 10 μg l−1, the microbiota diversity was not im -
pacted and the community composition was rather
similar to the one of the no-antibiotic treatment.
However, the microbiota composition of the sur-
rounding water community shifted strongly in the
presence of the antibiotic (Almeida et al. 2019). This
suggests that compared to free-living communities
host-associated communities might in some cases be
more resistant to antibiotic exposure. In a different
study on zebrafish, the same antibiotic at even lower
concentration (420 ng l−1) did shift the microbial com-
munity, but no shift was observed with sulfamethox-
azole (260 ng l−1) (Zhou et al. 2018).

Despite these small shifts in microbiota community
composition, the presence of antibiotics can also
affect the host’s physiology or susceptibility, either
through the direct action of the antibiotic on the host
or indirectly through impacts on the microbiome. In
the above-mentioned study, for example, the pres-
ence of both antibiotics was associated with higher
mortality of the fish when challenged with a patho-
gen (Zhou et al. 2018). The same oxytetracycline,
also in low dose, had a very strong effect on the
development of the animals in other experiments (Yu
et al. 2020), indicating a high potential of the antibi-
otic to affect the fish’s physiology via changes in its
microbiota. Exposure of Nile tilapia Oreochromis
niloticus to low doses of sulfamethoxazole and oxy-
tetracycline only slightly changed microbial commu-
nity and diversity, but chronic exposure to antibiotics
impaired intestinal morphology, permeability and
induced microbiota dysbiosis with a very strong neg-
ative impact on the fish’s physiology, nutritional
meta bolism and immune system (Limbu et al. 2018).

Moreover, combined effects might play an impor-
tant role: in an experiment with the D. magna model
system and low concentrations of ciprofloxacin, an
ef  fect on the microbiome composition (with in -
creased abundances of Pseudomonas-related taxa)
and on animal fitness was only observed when the
diet was poor. No effect, however, was detected
when animals were grown on a healthy diet (Akbar
et al. 2020). Effects of antibiotics on the animal micro-
biota at very low concentrations (<10 ng l−1), found in
many central European freshwater systems (Szy-
mańska et al. 2019), are so far unstudied. Further-
more, sub-inhibitory concentrations of antibiotics
often modulate bacterial gene expression, and many
antibiotics are assumed to act as signalling molecules
in microbial communities (Yim et al. 2007, Sengupta
et al. 2013). As such, even in the absence of bacterio-
cidal or bacteriostatic effects, antibiotics might affect
the physiology of microbial symbionts and ecological
interactions between them. This, in turn, can affect
the benefit they provide to their host. Thus, long-
term exposure experiments with low antibiotic con-
centrations and additional model systems should be a
focus of future research.

4.  PERSPECTIVES

4.1.  Significance of human-driven symbiotic shifts

The ever-increasing list of examples of beneficial
effects of microbial symbionts on aquatic organisms
indicates that our current knowledge on this topic is
mainly limited by research efforts and that much re -
mains to be discovered. Despite the overwhelming
evidence for the importance of microbial symbiosis
for aquatic organisms, we know very little about how
human activities affect these symbioses, and what
the consequences are for the hosts. Furthermore,
studies investigating human impacts on microbial
symbioses are often descriptive, reporting only
changes in the presence or abundance of microbial
symbionts without inferring fitness consequences for
the host. The fact, however, that many descriptive
studies often do report large shifts in the microbiota
community suggests that disturbances in mutualistic
interactions can be expected. This is supported by a
number of studies — albeit limited — that found a sig-
nificant impact of human activities on the symbiotic
interaction itself (Table 1).

Obtaining a better insight into the role of the
micro biome is crucial, given that it affects human
and, more generally, ecosystem health as indicated
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in the ‘One Health’ framework, where human and
environmental health are considered to be intercon-
nected and interdependent (Flandroy et al. 2018,
Berg et al. 2020). Ecosystem health depends to a
large degree on intact relationships between hosts
and their microbiomes or symbionts. Major issues to
be resolved in order to evaluate the importance of
such symbioses for ecosystem health include evaluat-
ing how taxonomically/ functionally redundant micro -
biota are with respect to their impact on host fitness
(Koedooder et al. 2019) and what the ecosystem-level
effects are, e.g. if keystone species (such as Daphnia)
are impacted (Macke et al. 2020). In line with this
‘One Health’ framework, it has become apparent that
integrating the interaction between multiple sym-
bionts, their host and the environment is crucial for
understanding disease aetiology and ecosystem
health (Bass et al. 2019). Many infections have
zoonotic reservoirs from which they can (re-)emerge
(J. P. Webster et al. 2016, Leger & Webster 2017),
while others may even pose conservation threats for
wild life populations (Thompson et al. 2010, Heard et
al. 2013). Although the link between host health and
its microbiota has mainly been considered in a med-
ical context, its importance in other areas such as con -
servation biology is becoming increasingly clear
(Trevel line et al. 2019). One way that humans have
triggered wildlife declines is by transporting dis-
ease-causing agents to remote areas
of the world (Byrne et al. 2019). Con-
sidering the importance of a host’s
micro biome in disease resistance and
host health, one would ex pect the
microbiome of aquatic hosts to play
an important role in their resistance
to and spread of infections (Tole do &
Fried 2011). This role has been shown
for the resistance of amphibians to
the fungal pathogen Batracho chy trium
den dro batidis (Fland roy et al. 2018,
Greenspan et al. 2019). The realization
that mass drug treatments alone do
not suffice to control diseases re newed
the focus on the control of their vec-
tors. Similar to malaria control, manip-
ulating the micro biome of aquatic vec-
tors could be a sustainable way of
controlling these diseases without
negatively affecting local ecosystems.
As a first step, resistance- inducing
strains could be identified, such as
the Enterobacter bacte ri um in the
mosquito Ano phe les gam biae which

makes its host almost completely resistant to Plas-
modium infections (Cirimo tich et al. 2011). Such
research is especially relevant in the Anthropocene
as human activities alter ecosystems, reduce the
microbial diversity in the environment and spread
disease-transmitting species across the world
(Houwenhuyse et al. 2018, Lachnit et al. 2019, Van-
hove et al. 2020).

4.2.  Future challenges

In this last section, we postulate 5 major challenges
to be addressed in future microbiome−host studies in
relation to anthropic pollution stresses (summarised
in Fig. 3):

4.2.1.  How can we distinguish direct effects of
human activities on the host from indirect effects
through their impact on symbiotic interactions?

One of the main challenges when assessing the
 effects of anthropogenic disturbances on symbiotic
inter actions is the difficulty in separating this impact
from direct effects on the host (Fig. 3A). Indeed, direct
effects on aquatic hosts have been recorded for all of
the above-mentioned disturbances (e.g. Silvestre et
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Fig. 3. Challenges to tackle in aquatic microbial research to improve our under-
standing of anthropogenic effects on symbioses between aquatic organisms
and microbes. Over time, increasing anthropogenic pressures on an aquatic
host (from left to right) inflict stress on the host and change its associated micro-
biota. The identified knowledge gaps are: (A) Do stressors directly impact the
host or indirectly through the microbiota? (B) How do multiple stressors simul-
taneously impact the symbiotic interactions? (C) How do human activities im-
pact microbial symbiont transmission? (D) What are the long-term effects of an-
thropogenic pressure on the symbioses and host persistence? (E) Can findings 

be generalised to other species?
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al. 2012). Two methodological approaches can be
used to separate such direct from indirect effects.

In a first approach, negative impacts on symbiotic
interactions are indirectly inferred based on a pro-
found knowledge of the functioning of the symbiosis,
and on observations of changes in parameters that
are known to be important for the symbiosis. This can
be relatively straightforward if the benefit provided
by a specific symbiont is well-described and the
anthropogenic disturbance shows a clear effect on
the presence, abundance or functioning of this sym-
biont (e.g. coral bleaching under temperature stress;
Glynn 1991). Data on the effect size of symbionts on
the host’s phenotype through experiments manipu-
lating their presence or abundance (e.g. Rosati et al.
1999, Becker et al. 2009) can furthermore be used to
examine if the effect sizes of the human impact on
the host are in the same range. However, indirect
inference of negative effects on host−symbiont inter-
actions is often not as straightforward because a ben-
efit provided by symbionts can depend on complex
interactions, and anthropogenic disturbances can
impact microbiota communities in complex ways
through changes in composition and metabolic func-
tioning. The use of multi-omics approaches could
provide insight into the magnitude of the impact of
a disturbance on symbiotic interactions. For exam-
ple, if the gut microbiota community benefits the
host through the production of a specific metabolite;
(meta)  genomics, (meta)transcriptomics, (meta) pro-
teo   mics and (meta)metabolomics could be used to
investigate the impact of a disturbance on, respec-
tively, the presence of genes needed for the produc-
tion of this metabolite, the expression of these genes
and the concentration of gene products or the
metabolite itself (Douglas 2018, He et al. 2020).

The second approach involves directly measuring
the effect of a disturbance in the associated micro-
biota on the host’s phenotype. When an environmen-
tal factor causes a change in the presence or abun-
dance of symbionts, this change can be mimicked in
the host without exposing this host to the factor
responsible for this change. This process allows the
effect of changes in the microbiota community on the
host phenotype to be measured by removing the
direct effect of the environmental factor on the host.
Two methods can be used to achieve this, both of
them starting with an initially germ-free host, fol-
lowed by the inoculation of microbial symbionts. In
transplant experiments, hosts and their associated
microbiota are exposed for some time to a stressor (or
a combination of stressors) of interest (e.g. high tem-
perature, toxic cyanobacteria, pesticides), allowing

the microbiota to respond to this change. Microbiota
communities are subsequently extracted from the
exposed hosts and transplanted into germ-free recip-
ient hosts. This approach has been successfully used
to directly measure the effect of environmentally
induced changes in the microbiota on phenotypic
traits of various animals such as mice, desert wood -
rats and Daphnia water fleas (Ridaura et al. 2013,
Kohl et al. 2014, Macke et al. 2017a). Synthetic com-
munities can also mimic the effect of a disturbance
on the associated microbiota through precise inocu-
lation of cultivated microbiota members. Although
this method is still in its infancy due to a lack of rep-
resentative collections of microbiota isolates, this ap -
proach is becoming feasible for some model organ-
isms like Caenorhabditis elegans (Rafaluk-Mohr et
al. 2018, Dirksen et al. 2020) and Drosophila melano -
gaster (Douglas 2018). Both methods hold great
promise for directly measuring the effect on changes
in the microbiota composition on the host phenotype,
but it must be noted that accurately mimicking envi-
ronmentally induced changes in the absence of the
environmental factor can be challenging (Callens et
al. 2018). Furthermore, metabolic changes in the
microbiota as a result of removing the environmental
factor of interest are also not taken into account.

4.2.2.  Can we expect that the measured impact of
single stressors will be additive in multi-stress

environments?

The impact of humans on aquatic systems is clear ly
multifaceted, and aquatic organisms are therefore
likely to face different challenges simultaneously
(Fig. 3B). Examples have shown that stressors can
amplify one another (e.g. acidification and tempera-
ture increase; N. Webster et al. 2016), but more
complex effects are equally possible. For instance, a
high salinity tolerance in a coral−Symbiodinium sys-
tem also confers increased thermotolerance (Gegner
et al. 2017), and the presence of cyanobacteria af -
fects white fat cell disease in Daphnia, potentially
mediated through changes in the microbiome
(Coopman et al. 2014, Macke et al. 2017a). The
complexity of multi-stressor interference on host−
microbiome inter actions calls for more realistic ex -
periments evaluating the effects of multiple stres-
sors on aquatic organisms simultaneously. Such a
multi-stressor ex perimental approach will provide a
more accurate insight into the performance of aqu -
atic organisms in an anthropogenically disturbed
environment.
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4.2.3.  What is the impact of human disturbances on
microbiota transmission?

Very little is known about the consequences of
an acute disturbance on symbiont transmission
(Fig. 3C). Many of the examples discussed above
have shown that anthropogenic disturbances can
severely affect the presence or abundance of benefi-
cial symbionts. These changes can subsequently dis-
turb the symbiont transmission chain, affecting the
transmission probability of beneficial symbionts to
the next generation (Koskella & Bergelson 2020).
This, in turn, can strongly affect subsequent assem-
bly of host-associated microbiota communities and
the host’s phenotype (Callens et al. 2018). In labora-
tory populations of mice, a ‘legacy effect’ is often ob -
served, where differences in microbiota composition
are maintained between groups of co-housed indi-
viduals who transmit microbiota among each other
but not with members of other groups (Robertson et
al. 2019). This observation indicates that changes in
the microbiota of an interacting population of hosts
can be maintained over time, even if the stressor is no
longer present.

Ecological frameworks such as metapopulation
theory (e.g. used to understand the transmission of
microbial infections; Gandon et al. 1996, Haag &
Ebert 2004, Laine & Hanski 2006) and metacommu-
nity theory (Leibold et al. 2004, Mihaljevic 2012) can
be used to estimate the consequences of an anthro-
pogenic impact on symbiont transmission between
hosts, and the consequences of changes in trans -
mission on host-associated symbiont communities.
Micro  biota studies can be perfectly treated as a
metacommunity ecology problem, i.e. to adapt meth-
ods from metacommunity ecology to understand dis-
persal, diversity patterns and community assembly of
symbionts (Macke et al. 2017b).

4.2.4.  What is the potential for long-term mitigation
of human impacts on symbiotic interactions?

Most environmental disturbances have marked
and reasonably well-studied short-term effects on
the interactions which are generally reflected by
shifts in the host-associated microbial community as
well as changes in the host’s metabolism and physio -
logy. The resulting changes in the symbiotic interac-
tions can lead to dysbiosis (e.g. Krotman et al. 2020),
worsening the impact of anthropogenic changes on
the host, or shift the interaction towards a novel equi-
librium between host, microbiota and the environ-

ment (e.g. Röthig et al. 2016). The long-term stability
of this newly attained equilibrium has hardly been
explored, yet is likely to determine how the hosts will
endure the unremitting human pressure on aquatic
ecosystems (Fig. 3D).

Understanding the ecological dynamics, whereby
the symbiotic community changes as a result of
anthro pogenic impacts, and the evolutionary dyna -
mic, a product of the adaptations of the host and its
associated symbionts to anthropogenic impacts, is
key to predicting long-term stability of the host−
microbiota interactions and host persistence. Some
host− microbiota systems might inherently be more
robust to changes, either due to higher plasticity of
the host, as is the case for some invasive species (e.g.
Fontaine & Kohl 2020), or due to a more diverse asso-
ciated microbial community with a high degree of
functional redundancy (Callens et al. 2018). Anthro-
pogenically induced environmental changes could,
in these robust systems, result in a microbial commu-
nity with a very similar functional make-up, provid-
ing similar health benefits for the host.

Host−microbiota systems with a less diverse micro-
bial community or highly coevolved partners, on the
other hand, are likely to be more sensitive to pertur-
bations as replacement or complementation of the
symbionts might not be possible. Rapid adaptations
of the host, the microbiota or both might still aid these
systems to persist under anthropogenic pressure.

If evolutionary rescue occurs, enabling the host
and its associated microbiota to recover from anthro-
pogenic pressure, it is likely driven by the evolution-
ary potential of the microbial community, which is
generally much higher than that of the host (Koskella
et al. 2017, De Meester et al. 2019). It is worth noting
that adaptation of the microbial symbionts does not
need to happen in association with the host but can
even occur independently and still have implications
for the health of the host. For instance, the adaptation
of the bacterium Vibrio fischeri to temperature and
pH stress affected its bioluminescence levels when
present in its squid host (Cohen et al. 2019, 2020).

Long-term persistence of the organisms does not
only depend on how changes in host−microbiota
interactions will affect the health of the host, but also
on how they will impact the fitness of the host com-
pared to the other organisms present. Studies com-
paring how changes in the microbial symbiont com-
munity affect multiple competing species are rare for
aquatic systems (Koedooder et al. 2019). Such studies
can help explore how microbiome-driven changes in
relative fitness can, in the long-term, result in alter-
nate communities (terHorst & Zee 2016).
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4.2.5.  Can we generalize the anthropogenic impact
on symbioses between aquatic organisms and

symbionts?

Most studies are limited to a restricted set of organ-
isms that either show drastic effects when microbial
symbionts are disturbed (e.g. coral bleaching in the
coral−zooxanthellae symbiosis; Muller-Parker et al.
2015) or freshwater organisms that are easily amen -
able to experimentation (e.g. Hydra, Deines & Bosch
2016 and Daphnia, Sison-Mangus et al. 2015, Callens
et al. 2016, Macke et al. 2017b). Considering the
large aquatic diversity which is, particularly at broad
taxonomic scales, much higher than in terrestrial sys-
tems (Grosberg et al. 2012, Tadesse 2018), the lim-
ited set of focal organisms does not allow us to draw
general conclusions upon how the disturbance of
microbial symbioses might influence aquatic ecosys-
tem functioning (Fig. 3E). This urges us to diversify
the experimental systems in which these interactions
are investigated. Broadening the scope of suitable
host−microbiota systems poses im portant challenges,
including developing the appropriate genetic tools
and establishing axeni zation protocols, but major
efforts are currently being made at overcoming these
hurdles for a wide array of aquatic organisms (Dit-
tami et al. 2021).

Generalization is further hampered by limited in -
sight into how genetic diversity within species
impacts the host−microbiota interactions. It is clear
that different genotypes of the same species can
have markedly different microbiomes (e.g. Callens et
al. 2020, Frankel-Bricker et al. 2020), respond differ-
ently to environmental changes (Stock et al. 2019b)
and affect the environmental microbial communities
differently (Macke et al. 2020, Massol et al. 2021).
Studies using a single genotype might thus not be
representative of the response of genetically diverse
species, hampering generalization of human impacts
even on the level of a single species. A relevant dis-
cussion in this respect is whether there are consistent
patterns to be detected between field and lab micro-
biomes. For some aquatic (especially vertebrate)
 species, there seems to be a certain consistency in
the microbiome, e.g. the presence of Proteobacteria,
Fuso bacteria and Firmicutes in gut microbiomes of
zebrafish Danio rerio and many other fishes (Roesel-
ers et al. 2011, Ghanbari et al. 2015). For many other
aquatic organisms, however, no consistent patterns
have thus far been recorded. For Daphnia, some bac-
terial strains (e.g. Limnohabitans sp.) have been per-
sistently found in lab cultures (Peerakietkhajorn et
al. 2015), but Daphnia also associates with oppor-

tunistic species from the natural environment de -
pending on particular conditions (Eckert & Pern-
thaler 2014, Callens et al. 2020). Nevertheless, that
does not exclude the possibility that adaptive pat-
terns cannot be found across field and lab microbio-
mes given the strong genotype × microbiome inter-
actions detected (Macke et al. 2017a, Houwenhuyse
et al. 2021). It is likely that there are multiple
‘healthy’ microbial profiles depending on the con-
text. Although the diversity of microbes may be dif-
ferent between field and lab conditions, the func-
tional profile of these communities may be similar
(Burke et al. 2011, Adamovsky et al. 2018).

In conclusion, well-designed experiments covering
the vast aquatic diversity will greatly improve our
mechanistic understanding of which microbial sym-
bionts improve the health of hosts. These insights will
allow for the design of powerful models to project the
multitude of anthropogenic impacts on aquatic organ-
isms and ecosystems. Validation of such models will
require more in situ, observational data. Long-term
data series that span periods of changing anthro-
pogenic influences on environmental and organism-
associated microbiomes will be essential to substan -
tiate and fine-tune model projections, in order to
en able the development of adequate measures to
counteract the potential negative consequences for
organismic and environmental health.
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