UNIVERSITE CATHOLIQUE DE LOUVAIN Faculté des Sciences Laboratoires de Géologie Générale

ETUDE GEOCHIMIQUE DE LA MATIERE ORGANIQUE SEDIMENTAIRE PAR PYROLYSE

Caractérisation des roches à kérogène et des bitumes par pyrolyse comparative et analyse cinétique. Application au secteur pétrolier du Bas Zaïre – Angola

> Volume II : Figures & Tableaux Volume III : Annexes

Dissertation présentée en vue de l'obtention du grade de DOCTEUR EN SCIENCES par

Damien DELVAUX de FENFFE

Louvain-la-Neuve Octobre 1988

ANNEXE V

1

ANNEXE V: <u>DONNEES DE BASE SE</u> <u>RAPPORTANT AU Chapitre V</u>

<u>Annexe V.1</u>
Données géochimiques des échantillons du Bas Zaïre - Angola.
<u>Annexe V.2</u>
bogb deb principales donneeb gebenimiqueb du bab baile imgola.
<u>Annexe V.3</u>
Tableaux de synthèse des données géochimiques du bas Zaire - Angola.
<u>Annexe V.4</u>
Courbres de réaction théoriques ajustées aux courbes de pyrolyse expérimentales.
<u>Annexe V.5</u>
Donnees de pyro-chromatographie.

-+000+-

ANNEXE V.1.1. POTENTIELS PETROLIERS ET INDICES DE PRODUCTION (PYROLYSE COMPARATIVE)

. . . _ . _

		POTENTI	ELS (mg i	HC/g ro	che)		ł	INDIC	ES de Pl	RODUCTIO)N		
	Code	НС ТОТ	5 2	52'	51'	S1	:	IKP	IKA	IAH	IQH	IP	BIT.R.
AAA	AAA170803	23.32	14.42	2.18	.46	6.25	:	.38	.13	.75	.93	.27	191.4
	AAA175003	33.15	21.33	2.9	1.13	7.8	1	.36	.12	.76	. B7	.24	196.67
	AAA188703	.86	.05	0	0	.01	;	9	8	8	8	0	0
	AAA189183	.07	.84	8	8	.83	;	0	Ð	8	8	8	0
	AAA1B9263	.86	.06	8	0	8	;	6	0	8	0	0	8
	AAA190103	.04	8	8	8	.84	1	8	6	8	8	8	8
	AAA198283	.63	.82	8	8	.01	;	8	Ø	8	8	8	8
-	AAA191163	.84	.01	.03	8	0	1	0	8	0	9	8	8
	AAA199903	.06	.06	8	0	8	;	8	8	0	8	0	8
	AAA200113	1.99	1.99	.07	e	0		0	.03	9	0	8	0
	AAA280143	1.42	1.84	.16	.1	.12	;	.27	.13	.58	.55	.88	118.75
	AAA200153	1.45	1.45	.11	8	8	;	8	.87	0	0	8	0
	AAA200573	5.01	5.01	.4	8	8	;	6	.07	8	8	8	8
	AAA208632	32.14	32.14	0	8	0	;	0	8	8	0	0	0
	AAA200673	.22	.87	.14	.01	8	1	.68	.67	.07	8	8	75
	AAA200832	.35	.35	0	8	8	1	0	8	0	e	8	8
	AAA281183	.83	.83	8	8	8		0	8	0	8	8	0
	AAA201483	1.85	1.85	8	8	ē	1	0	8	0	0	8	6
	AAA201523	28.73	28.73	8	8	8		. 0		A		8.	8
	AAA201533	3.17	1.63	.36	.23	.95		49	.18	.77	-8	.3	265.52
	AAA281553	1.73	1.73	A	A	A		8	8	8	A	R	8
	AAA281733	.74	.74	ñ	ด้	ā		8	A	Å	Ā	ē	8
	AAA281823	7.35	7.35	8	8	8		A	8	ā	ā	8	8
	AAA201923	61.92	52.93	3.18	.35	5.45		. 15	.86	. 45	.94	.89	128.47
	AAA292783	114 47	184 19	29	1 74	8.05		11	.87	76	84	.07	182 97
	AAA282533	.22	P. 104117	.1	8	.12		1	1	.55	1	. 55	R
	AAA282773	1.02	.81	9 4	้ดา	17		.21	.87	.76	.81	.13	58.73
	AAA2842273	15	97	0.0	P	 Di		A .	8	a.	a .	8	a
	AAA284553	9 59	7 58	76	77	Q1		. 21	ัดจ	4.2	77	.1	85 84
	AAA2000000	10.00	7.30	1 84	47	1 40		29	12	49	. 79	14	157.85
	AAA297443	84	82	25	, A	A		: A	8	 A	8	A.	P
	AAA202163	26	a	27	8	87		1	1	12	1	.12	199
	AAA 70220103	7	~ ?0	97	8	81 81			ao	1	i i		25
	AAA704127	12	12	8	8	A	1		A.	Ŕ	Â	8	8
	AAA704717	14 49	16 49	Å	a	a		2 9	Ā	Ř	Å	ã	Ā
	AAA704487	15 79	15 79	0 0	0	ē			Å	Ř	Ř	Å	9
	AAA784747	14	1	0.7		D1	•		Å	å	a	Ā	9
	HH1305753		••	.05	.01				•	•	•	•	
AAG	AA6200543	8.35	7.85	4.5	1.89	.74		.86	.36	5.15	.28	.09	17.71
	AA6202103	2.92	2.64	1.72	.86	.85		.1	.39	.38	• 45	.02	30.21
	AA5282413	2.44	2.21	.11	.63	.0 9		.89	.185	.52	•75	. 84	38.33
	AAG282913	1.61	.93	.21	.14	.33		. 42	. 18	.69	•7	.21	272
	AA6203133	3.6	2.74	.53	.12	.22		•24	-16	. 39	.65	.86	91.58
	AA6217843	6.05	5.33	.6	.05	.07	i	.12	.1	.17	.58	.01	49.32
	AA6223443	1.83	1.8	.82	0	.0 1		.02	.01	.34	1	.61	5.17
	AA6223723	5.15	3.29	1.8	.85	. 81		.36	• 35	.83	.16	8	166.87
	AA6224123	60.85	55.45	4.11	.16	1.12		.09	.87	•24	.88	. 62	88.24
	AA6224653	10.81	8.81	1.57	.15	.28	ł	.19	.15	.22	.65	.83	99.5
	AA6225123	13.5	12.07	1.02	.21	.2		.11	.08	.29	.49	.01	68. 85
	AA6226613	.78	.68	.08	8	.01	1	.13	.11	.1	1	.61	5.85
	AAG227033	43.2	34.06	7.84	.54	.76		.21	.19	.14	.58	.82	185.77
	AAG227213	98. 97	73.B8	16.78	.03	.27	1	.19	.19	.8 2	.91	8	177.1
	AAG227623	39.82	38.26	21.73	. 39	.3		.84	.36	.44	.43	.01	34.14
	AA6232503	66.3	57.34	7.84	.3	.B2	4	.14	.12	.13	.73	.01	112.7
	AAG232753	46.14	41.64	2.99	.53	.99		.1	.87	. 34	.65	.82	77.32
	AAG232983	54.21	47.93	3.95	.62	1.71		.12	. 88	.37	.73	.03	95.81
	AAG233233	58-69	55.66	1.4	.38	1.26		.05	.82	.54	.77	.82	40.24

LEGENDE DE l'ANNEXE V.1.1 - Résultats de pyrolyse comparative des échantillons du Bas Zaïre - Angola. *HC TOI*: ensemble des fractions S2, S2', S1' et S1 (mg HC/g roche), *S2*: hydrocarbures du pyrolysat du kérogène, *S2'*: hydrocarbures du pyrolysat des résines & asphaltènes, *S1'*: hydrocarbures lourds (C_{20-40}), libres ou adsorbés, *S1*: hydrocarbures légers (C_{1-25}), libres ou adsorbés (thermovaporisables). Indices de production *IKB*: (S1+S1'+S2')/HC TOI (production totale de bitume), *IKA*: S2'/(S2+S2') (rapport résines & asphaltènes - kérogène), *IAH*: (S1+S1')/(S1+S1'+S2') (rapport hydrocarbures - résines & asphaltènes), *IQH*: S1/(S1+S1') (rapport hydrocarbures légers - hydrocarbures lourds), *IP*: S1/HC TOI (Indice de Production de la méthode classique), *Bit R.*: (S1+S1'+S2')/COI (Bitumen Ratio).

ANNEXE V.1.1.

.

		POTENTIELS (mg HC/g rocne)						INDIC	ES de P	RODUCTI	ON		
	Code	нс тот	52	S 2'	51'	S1		IKB	IKA	IAH	IQH	IP	BIT.R.
Ξ	AAE060001	20.46	18.97	1.49	0	e 2		.07	-=====================================		0	 0	38.7
	AAE064001	3.9	3.68	.14	.05	.03		.06	.04	.36	.38	.01	25.58
	AAEB68001	18.82	17.17	.7	.35	.61		.09	.04	.58	.64	.03	49.55
	AAE072001	17.3	16.15	.53	.34	.28		.07	.03	.54	. 45	.02	39.79
	AAE0/5001	40,/6	37.8	.88	.91	1.16		1.107 1.107	.02	.7	.56	.03	53.62
	AAE000001	33.07	28.53	2.62	.00	.o ₽1		i-10∠ ! 1∆	ю 08	.82 47	•91 61	.107 00	05 22
	AAE088001	9.14	8.1	.69	.22	.13		1 . 11	.08	-34		.01	45
	AAE100001	22.93	21.29	1.89	.32	.23		.07	.85	.34	.42	.01	43.04
	AAE104001	19.66	18.31	.84	.28	.23		.07	.84	.38	. 45	.01	37.92
	AAE108001	20.65	18.56	1.31	.5	.27		.1	.07	.37	.35	.01	59.21
	AAE112001	16.96	16.18	.46	.18	.14		.05	.03	.41	.44	.01	25.24
	AAE116001	10.07	9.46	1.12	07	.01		11	.11	- 61	1	8	49.34
	AAF129001	1.39	1.7	.16	. Ø3 9	.103 197		i 12 ! 14	.1	•22	• 2	-181 010	23.71
	AAE132001	1.93	1.43	.27	.15	.08		.26	.16	.46	.35	. 84	52.08
	AAE136001	1.01	.72	,27	.01	.01		.29	.27	. 87	.5	.01	52.73
	AAE140001	1.09	1.07	ø	0	.02		.82	6	1	1	.02	2.94
	AAE144021	.59	.55	.24	8	.01		.08	.07	.2	1	.02	11.11
	AAE148101	.58	.52	.86	0	0		1.1	.1	8	0	6	11.11
	AAE152001	.5	.42	.06	.01	• 101		.16	.13	.25	.5	.02	14.55
	AAE136001	•20 19	.127	•12 9	.02 A	.101 Pi		i ⊿64 !bi	•2/ a	.17 0	.JJ 0	, 104 D	4/.105 D
	AAF164001	.33	-29	.03	8	ß		1.12	. 89	ю Я	D D	e A	10.57.
	AAE168001	.33	23	.07	8	.01		.3	.28	.1	1	.03	25
	AAE172301	.46	.42	.04	8	0		.09	.09	0	Ø	0	8.33
	AAE176001	.29	.29	0	Ð	8		8	8	8	0	8 -	8
	AAE180201	.27	.21	.05	8	.01		.22	.19	.17	1	.04	16.22
	AAE184001	.18	.12	.04	8	.03		8	8	0	0	8	0
	AAE190301	1.63	.1/	.11	.38	.9/		· .9	.39	.92	.72	•6	331.82
	AAE172073	./3 7 97	1 48	10 100	6	.03 A 76		i.104 170	10 10	107	1 107	.04	7.14 577 41
	AAF192843	119.49	68.82	14.33	13.55	31.59			.19	.76	.03	.26	195.05
	AAE193173	19.97	.75	2.64	2.44	14.13		.96	.78	.86	.85	.71	1050.27
	AAE193793	3.87	.33	.23	.93	2.37		. 91	.41	.93	.72	.61	610.34
	AAE194293	8.56	.63	1.28	1.14	5.51		.93	.67	.84	.83	.64	708.04
	AAE195153	1.11	.97	.03	.82	.09		.13	.03	.79	•B2	.08	77.78
	AAE196773	1.57	1.57	0	8	0		10	8	Ø	0	0	0
	AAE198383	1.82	1.64	.08	.03	.67			.105	.56	.7	.04	31.03
	AAE 200001	• 4 (94	02 05	7	6 47		1 107 ! QA	.0/ 54	10 05	¥ ۲0	47	710 75
	AAE200801	2.55	.19	.46	.39	1.51		:.93	.71	.81	.79	.59	481.63
	AAE201401	2.59	.17	. 41	.37	1.63		.93	.71	.83	.81	.63	472.55
	AAE201801	10	.03	6	8	0		6	0	6	0	8	8
	AAE202203	29.26	1.89	3.27	3.81	21.09		.94	.63	.88	.88	.72	950.35
	AAE202573	1.37	1.3	0	8	.06		.05	0	.86	1	. 84	15.22
	AAE202593	8.3	5.2	1.3	.41	1.39		.37	•2	.58	.77	.17	157.36
	AAE203013	10.04	13.16	1.37	.32	.97		i .18	•11 22	.40	./5	.00	80.9/
	AAE203303	1.32	1.03	.23	.83	. 19		: .22	. 24	.76	.86	- 14	93.55
	A4E224183	13.06	8.73	1.1	.5	2.73		.33	.11	.75	.85	.21	156.32
	AAE206703	3.3	1.07	. 49	.18	1.55		.68	.31	.78	.9	.47	293.42
	AAE206733	2.43	.4	.49	.25	1.29		.84	.55	.76	.84	.53	344.07
	AAE208601	1.01	.13	.17	.22	.48		.87	.57	.8	.69	.48	204.65
-	AAE210601	.78	.2	.18	.14	.25		.74	.47	.67	.64	.32	118.37
	AAE267443	4.14	1	1./1	./	•12 27		i ./6	.6J 05	.43	• 21	.1/	478.63
	AAE267003	2.28	1.9	.31	8	.23		1.17	. 14	. 21	1	.07	33.93
	AAE268173	1.62	1.03	.35	.04	.16		.33	.24	.37	.B	.1	112.5
	AAE271201	.19	.08	.89	8	.02		: 8	ß	8	8	6	8
	AAE271401	.19	.04	.09	.03	.02		8	0	0	0	8	0
	AAE271601	.05	.05	0	8	0		:0	8	0	0	6	0
	AAE272001	.87	.07	0	0	0		. 0	0	e	0	8	0 .
	AAE272401	75.8	72,36	8	.84	3.1		.85	6	. 91	.99	.04	25.79
	AAE273001	113.62	151 15	18.34	1.40	3.00		• 44 • 197	•1/ A	•20 70	./8	.04	202.18
	AAF 274 201	199 45	194 54	3,55	. <u>с</u> ,	7.13		, 107 1		. 13	•7/ 1	.00 .07	68.33
	AAE274401	109.92	89.31	13.37	.55	7.28		.19	.13	.37	.93	.07	139.47
	AAE275281	36.89	31.74	2.89	.87	2.19		.14	.08	.44	.97	.05	128.65
	AAE275881	71.88	68.85	6.93	.19	3.91		.15	. i	.37	.95	.05	128.55
	AAE 274 201	62.74	55.93	3.07	8	3.74		.11	.05	.55	1	.06	91.53
	mez rezer		-	1 01	15	3.31		14	. 89	. 39	.84	. 65	126.77
	AAE276601	71.49	61.26	6.20	.0.	0.01							
	AAE276501 AAE27601	71.49 60.61	61.26 49.85	6.20 6.85	.56	3.35		.1B	.12	.36	.86	.86	147.6
	AAE276601 AAE277601 AAE277601 AAE277401	71.49 60.61 48.78	61.26 49.85 42.92	6.20 6.85 2.41	.55 .06	3.35		.1B	.12	.36	.86	.06 .07	147.6

		POTENTI	ELS (mg	HC/g ro	che)		INDI	CES de P	RODUCTI	ÖN		
	Code	HC TOT	52	\$ 2'	S1'	51	IKB	IKA	IAH	IQH	IP	BIT.R.
AAF	AAF312603	22.68	7.1B	3.72	2.84	8.94	86.	.34	.76	.76	.39	634.84
/ / / / /	AAF312743	57.94	51.89	1.67	.53	3.85	.1	. 83	.72	.89	.07	B2.43
	AAF312803	85.27	72.06	5.99	1.65	5.57	.15	. 69	.55	.77	. 87	108.9
	AAF312863	95.24	77.55	9.3	1.98	6.41	19	.11	.47	.76	.87	150.81
	AAF313053	23.88	2.83	3.37	3	14.68	. 89	.54	. 84	-83	.61	746.45
	AAE313223	34.23	28.15	2.77	.88	2.43	. 18	.09	-54	.73	.07	143.96
	AAF313473	19.96	13.79	3.9	.45	1.82	1.31	.27	.37	.8	.89	156 6
	AA0349556	29 62	1.6	2.66	2.99	13.37	92	.62	- BA	.82	. 45	844 55
770	AA/1741094	51 89	A4. 15	5 7	.84	3 99	1 15	11	26	- 00		115 55
	AA0745034	18 42	1 12	2 99	2 4	11 01	96	77	.10 87	92	66	000 72
	AA0345184	10.02	1 71	2.10	1 59	07	00	54	.00	-01	.04	447 77
	AA0744104	12.17	1 50	4 97	1 44	7.45	· Q1	- 20 07	41	.00	45	744 4
	AA0744704	47 47	77 52	2 42	27	7.00	1 474	•13	50	•02 07	J 00	194 47
	AA07/0300	74 0	201.54	A 71	• 4 3 2 197	0.51	1 14	10	- 37	.73	24	774 89
	MAU340200	17 11	20.31	4.71	2.0/	2.74	1 . 44	10	*/1	-02	•20	230.00
	AA0751552	13.00	5.10 5.74	2.47	•7/ 1 Di	2.70	2 . 7 1	.10	*00	. /4	75	231.07
	AA075100/	13.02	3.30	2.40	1 66	4.02	1 07	.31	• / 1	·0-3	• 3 J	150 07
	AA0757770/	41.7	30.42	3.23	7.77	0.7	1 147	-1	•12	•01 76	- 10	136.67
	AA075750/	22.8/	7.17	9.72	2.21	7.01	· •0	.37	•04 52	-13	•27	540
	AA075776/	23.31	3.37	0.00 7.00	2.23	10 70	1	-02	. 12	.70	.3	300 30
	MA0333736	30.0/	13.01	0 77	3.62	7 10	1.JO	• 34	.00	-11	.20	374.20
	MAU333806	33.87	17.24	8.3/	2.28	7.17	1 51	.00	.33	./D	.2	272.02
	AAV336006	40.01	14.78	7.2/	2.12	8.23	i .]]	.32	.34	- C1 - 07	•21	313.10
	AAK/306186	410.7	29.J/	1.21	2.02	7.1	1.44 1.70	.23	. 30	.78	•17	200.00
	AAUJJ6J06	33.77	32.83	11.31	. 27	7.12	i . 37	.20	.40	. 1/	•17	242.07
	AAV336406	32.67	16.27	1.99	2.31	6.12	i .)	.33	.21	.73	.17	247.17
	AAU308186	8.31	1.4	1./3	. 92	4.24	; .83	.36	•/5	.82	.51	231.24
AAP	AAP1059203	22.19	17.83	.30	. 39	3.62	i •Z	.02	•92	. 4	.16	104.31
	AAP063003	38.91	32.86	3.13	1.44	1.48	1.16	.87	- 48	.51	. 104	88.58
	AAM067201	20.96	4/.//	1.66	.82	•/1	i.06	.03	• 48	.46	- 101	31.93
	AAM0/5003	51.3	45.7	3.66	. 48	.76	; .11	.07	. 35	.49	.102	13.98
	AAP0/8603	45.06	38.27	4.72	1	1.6/	15	.11	<u>د ،</u>	•52	. 62	94.9/
	AAP883883	<u>ک</u> 37	22.14	2.27	.66	.1	: .13	.189	.3	. 32	.01	81.16
	AAP885883	14.31	12.48	1.38	.32	.13	13	.1	.2	.29	.01	91.04
	AAP087003	14.12	11.94	1.5	•42	-25 	: 15	.11	.31	.37	.82	78.55
	AAP887811	39.58	35.55	2.63	.84	.56	1 .1	.87	.35	.4	.01	63.17
	AAP091003	63.34	57.67	3.83	1.2	.64	1.09	.8 6	.32	•35	.01	62.51
	AAP295483	46.61	44.14	1.48	.31	.68	:.05	.03	.4	•69	.Øj	38
	AAP098603	52.23	48.16	2.99	.54	.54	.08	.66	.26	.5	.01	50.31
	AAP103003	69.11	64.29	2.7	. B6	1.26	.87	.04	. 44	.59	.02	46.44
	AAP104603	64.87	58.07	4.53	1.14	1.14	: .11	.07	.34	.5	.02	69.28
	AAP111003	41.78	38.55	2.33	.58	.33	; .8 8	.86	.28	.36	. 191	47.85
	AAP113803	35.07	32.47	2,59	8	.01	.87	.87	0	1	8	40.88
	AAP115203	20.63	17.9	2.13	.36	.24	: .13	.11	.22	.4	.01	67.57
	AAP119863	37.85	35.78	.92	.13	.23	: .03	.83	.28	.64	.81	28.52
	AAP123003	34.49	38.22	3.54	.47	.27	: .12	.1	.17	.36	. Bi	72.99
	AAP254671	5.87	2.44	1.18	.75	1.5	: .58	.33	.66	.67	.26	329.81

		POTENTI	ELS (m	HC/g ri	oche)		: INDI	CES de F	RODUCTI	ON		
	Code	нс тот	S 2	S 2'	S1'	51	¦ IKB	IKA	IAH	10H	IP	BIT.R.
ΔΚΔ	AKA116293	13.5	.31	2.26	1.65	9.29		. 88	.83	.85	.69	1046.83
/	AKA116653	6.38	.17	1.4	.77	4.84	: .97	.89	.77	.84	.63	B62.5
	AKA117153	17.55	.17	2.73	2.16	12.49	: .99	.94	.84	.85	.71	1059.76
	AKA118253	19.93	.27	3.09	2.51	14.87	:.99	.92	.84	.85	.71	1045.74
	AKA118643	21.47	8	6.72	8	14.75	1 1	1	.69	1	.69	1057.64
	AKA119153	.12	.67	.03	8	.02	: 8	8	8	0	0	e
ΔΙΔ	ALA127223	18.33	.83	3.34	2.97	11.99	1 1	.99	.82	.8	.65	978.61
	ALA127333	16.97	.06	3.21	2.33	11.38	: 1	.98	.81	.83	.67	1006.55
	ALA127363	8.65	.01	1.65	1.22	5.77	: 1	.99	.81	.83	.67	919.15
	ALA129633	13.35	.05	2.4	1.76	9.14	: 1	.98	.82	.84	• 68	917.24
	ALA131943	.03	.01	0	Ð	.02	: 0	0	8	8	0	8
	ALA132903	.03	0	8	6	.03	: 8	0	8	8	0	0

ANNEXE V.1.2.

ANNEXE V.1.2. CARBONE ORGANIQUE, TEMPERATURE TMax, INDICES IH ET IO, RAPPORTS CINETIQUES

		COT (%)		{	TMax (*(c) i	IH	1	10
	Code	Rbr	Rex	Re+As :	Rex	Re+As	Rex	Re+As f	Rtr
ΑΑΑ	AAA170803	4.65	3.82	.266	425	410 :	377	820	32
	AAA175003	6.01	5.01	.25	427	438 :	426	0 ;	29
	AAA188703	.02	8	.019	2	0 ;	0	0	0
	AAA189103	. 81	. 91	8 ;	0	8 1	0	8 1	8
	AAA189263	.04	. 82	.02	0	8 ;	9	0	0
	AAA190103	0	9	0	0	0 :	8	8	8
	AAA190203	8	0	0 :	0	8 :	8	8	0
	AAA191163	8	8	R :	8	я :	ā	9 :	Ā
	AAA199983	A	Р	9 :	Ä	a :	a	A :	. 0
	AAA200113	. 14	.14	A :	А	8	0	a :	P
	AAA200143	.32	.28	.022 !	438	R :	371	P :	8
	AAA209153	.54	.54	R :	431	а :	269	я	146
	AAA200573	1.17	1.17	A :	443	6 :	428	A .	100
	AAA200632	4.25	4.25	ดี !	445	а :	756		74
	AAA209573	.2	.19		a	a :	0	а :	a a
	AAA200872	24	26	R 1	õ	а :	175	a :	9
	AAA201107	a .	A	A :	a	A :	A .	8	a
	AAA201100	44		9 1	445	a :	289	9	144
	AAA201523	7 91	7 91	a 1	472	0 !	754	9	1 11
	AAA2015T3	58	79	091 !	432	420 !	419	794	
	AAA201553	58	-59 59	A 1	441	A 1	299	0 i	110
	AAA201333		27	a '	670	a !	222	a 1	, 110 , a
	AAA201733	.2.5	.25	a :	430	a 1	9 9	9	. 0
	AAA201023	CO		757 ,	437	a :	941	601	110
	AAA000393	11 04	11 97	.355 1	101	، 420 I	941	701 A	13
	AAA202533	л.,,, Д	a	a 1	7-0-0 G	a !	9	0 0	
	AAA202333	36	้า	0 <u>4</u> 7 :	443	P !	279	A I	. 0. . 0.
	AAA294227	04	.05	R !	a-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	a :	a.	A !	. D
	AAA286553	2.33	2.25	9 :	644	a :	337	R	8
	AAA287293	2.08	1.79	.109 !	441	435 !	4.35	954	17
	AAA297443	.86	.07	A :	a	R !	a	A	. A
	AAA298163	.26	.25	A :	•	a :	A	ā ·	
	AAA302283	.84	.13	8 :	0	0 ;	ē	ē	. 0
	AAA306123	0	8	8	0	0	8	0	8
	AAA386313	2.81	2.81	8 5	452	8	516	8	66
	AAA306403	3.48	3.48	0	451	0 1	454	8	37
	AAA386763	8	. 05	0 ;	0	0 ;	0	8	. 0
	AACOBBE 17	0.00	~ ^			•	071		1.00
AAG	AAG200043	2.00	4.7	10 1	400		2/1	0	1 210
	AAG202103	.76	.82	,131 ;	437	10 i	322	10 2	43
	AAG202413	.5 OF	. 37	8 1	437	10 i	3/3	0	; 4 <u>/</u>
	AAG202913	<u>م</u> ،	• 24	10 i	4.0	8 1	380	0	10
	AAG203133			.1031	437	0 1	300 7/E	8	1 30
	AAG217843	1.40	1.40	10 i	437	10 1	303	8	
	AAG223443		.00	.017 ;	442	4/7	321	0	, 00 , 7,
	AACCOLLOT	1.12	1.02	.1070 ;	433	40/ /	323	0	1 31
	AAG224123	0.73	0	0//	437	12 i	814	8	1 310
	AAG225127	2.01	11 27	1004 i	443 640	ບ i ດ .	401 572	0 0	, <u>3</u> 3 , 75
	MAG222123	2.33	1.12 1.12	.040 ;	440	ບ i ກ	∡در ۱۸	0	1 20
	HH0225015	1.71	1.00	.047 i	43/	י ש אמו ויש	41	0	1 1 1
	ARG22/033	4.72	4.73	.001 :	441	420 1	7210	0 0	10
	HAGE2/213	7.80	7.40	.1/3 :	44)	431 I	/82 00/	υ a	18
	ANCOR0627	4.J/ 7.05	4.27	1242 i	442 170	ю ; о ;	070 704	10 10	27
	MAG232303 AAG270757	7.70 5.00	3.12 5.34	8 j 252	438 674	474 i	/10/0	0 a	1 21
	AM0232/33	2.02	444. 177 ک	166	400 475		76J 768	e a	(23) (0)
	NAG777733	0.01 7.57	3.21	a i i i i i i i i i i i i i i i i i i i	433	י סניי	784 750	U 0	יוט ידי
	HHGTOGTOD	د د م ا	1.7	10 i	404	10 i	116	C .	101

LEGENDE DE l'ANNEXE V.1.2 - Résultats de pyrolyse comparative des échantillons du Bas Zaïre - Angola.

COT: Carbone Organique Total, TMax: température au sommet du pic S2 du kérogène (Rex) ou au sommet du pic S2' des résines & asphaltènes (Re+As), IH: Indice d'Hydrogène (mg HC/g Corg.), IO: Indice d'Oxygène (mg CO_z/g Corg.).

Rbr: Roche brute broyée, *Rex*: roche broyée et extraite au dichlorométhane, *Re+As*: Résines & asphaltènes, *Rtr*: roche extraite et traitée à l'acide.

ANNEXE V.1.2.

	COT (%)	•		i TMax (•C)	: IH		; 10
Code	Rbr	Rex	Re+As	: Rex	Re+As	; Rex	Re+As	: Rtr
2===2=2=2== AAEG40001	7 05	7 47	22	. 797	471	*************************************	477	! 31
AAF044001	.86	.82	.033	1 373	4-51 R	1 123	9 9	1 51
AAE068001	3.33	3.16	.089	409	411	1 543	787	: 33
AAE072001	2.89	2.75	.098	: 410	0	587	602	: 33
AAE 076001	5.52	5.96	0	1 415	0	1 634	0	: 35
AAE060001	4.56	4.31	.195	408	8	1 768	0	1 31
AAE084001	4.81	4.58	.065	407	0	1 623	0	: 33
AAE088001	1.6	1.56		414	R	1 519	a	: 57
AAE100001	3.81	3.52	.244	416	411	1 605	447	: 34
AAE104001	3.56	3.48	.037	415	8	: 526	8	: 25
AAE102001	3.53	3.25	.215	: 413	496	1 571	609	: 25
AAE112001	3.09	3.11	0	415	8	528	8	1 33
AAE116001	2.29	2.29	8	407	0	413	8	: 35
AAE124001	1.05	1.04	.005	431	0	1 188	8	132
AAE128001	.67	.68	8	431	8	176	8	137
AAE132001	.96	.9	.041	432	8	1 159	8	173
AAE136001	.55	.54	.038	432	2	1 133	0	144
AAE140001	.68	. 64	.038	433	9	1 167	8	1 111
AAE144001	.45	.44	.009	433	0	125	8	; 8
AAE148101	.54	.54	8	: 430	0	96	8	1 65
AAE152001	.55	.55	8	426	0	; 76	8	: 48
AAE156001	.34	.44	0	1	8	1	0	1 0
AAE160001	.36	.33	.03	1	8	1	8	: 0
AAE164001	. 38	.39	8	426	8	74	8	1 8
AAE168001	.4	.37	.029	; 427	0	: 62	8	: 6
AAE172301	.48	.45	.03	: 419	8	; 93	0	; 8
AAE176001	.35	.36	0	438	8	: 81	0	: 0
AAE180201	.37	.35	.019	; 436	0	: 60	0	: 8
AAE184001	.22	.18	.037	: 8	8	:0	9	: 0
AAE190301	.44	.22	.107	1	436	;	103	18
AAE192073	.42	. 44	8	ł	0	;	0	: 8
AAE192283	1.17	.85	8	422	0	198	8	: 27
AAE192843	30.49	17.11	9.588	426	426	: 351	149	; 14
AAE193173	1.83	.15	.288	: 0	441	:0	917	: 8
AAE193793	.58	.18	.123	; 0	416	: 0	187	:0
AAE194293	1.12	.24	.321	:0	436	263	399	: 8
AAE195153	.18	.17	. 681	; 0	8	; 0	8	; 0
AAE196773	.62	.67	0	10	8	234	9	: 60
AAE198303	.58	.56	.012	:0	8	: 293	8	22
AAE198601	.36	.34	.02	1 426	0	174	8	: 8
AAE200001	.32	.23	.889	3	8		8	:0
AAE200801	.49	.24	.89	1	426		511	18
AAE201401	.51	.26	.082		435		500	
AAE201801	.1/	.18	8	i 10 1 4770	10 1 7 (10	8	
AAE202203	2,88	.41	.990	i 430	430	i 461	/33	10
MAE2023/3	.40	.41	1040	10	10/	1 31/	1000	i 10 1 me
AAE202373	1.7/	1.67	.127	1 426	965	1,3408	1008	1 2
MME203013	3.33	3.00	174	1 427 ! P	421 474	1430 1715	107	, 17 • g
MAC203303	. JO 171	.20	050 050	, 10 , (a	720 R	1 210	197 197	, 0 , 3
MAE200(107	2 77	2 60	A10	. U ! 477	0 0	1 1127 1 750	0	10 10
AAF702707	74	5.40 5.4	.075	1 441	U A	100	a	1 17 '
AAF?RA711	.59	. 45	.911	1 471	R	1 89	a	1.2
AAE 708-01	43		.041	:	8	: 37	ē	: 9
AAE218681	. 49	.37	.097		421		207	1.2
AAE257443	. 64	.29	.231	444	446	345	740	1.0
AAE267443	1.45	1.22	.211	1 1 1 1	0	: :::::	8	1 18
AAE: 57993	1.12	1.1	013	438	9	173	8	16
AAE268173	. 48	. 44	.023	421	0	245	0	18
AAE271201	.23	.25	0	1 12	0	1	Ð	: 8
AAE271401	.23	.25	0		8		8	: 8
AAE271601	. 15	.19	0	: 0	0	. 6	0	: 2
AAE272001	0	6	0	0	0	; 0	8	: 0
AAE272401	13.3	13.3	8	442	8	544	8	: 82
AAE273001	12.39	12.63	0	441	0	705	9	15
AAE273501	21.23	21.03	0	441	0	720	0	: 114
AAE274201	15.63	15.83	0	439	8	661	8	1 13
AAE274401	15.2	15.01	0	: 438	9	595	0	1 14
AAE275201	4.74	4.77	0	: 439	9	: 665	0	: 14
AAE275801	8.58	7.8	.436	; 440	456	780	9	; 15
AAE276201	7.44	7.82	. 186	439	456	: 797	0	1 15
AAE275601	9.07	7.56	.077	: 442	0	820	8	1.14
AAE277001	7.29	5.8	.162	; 443	441	; 733	9	: 14
AAE277401	5.91	5.54	0	441	0	1775	0	1.12
AAE277501	10.1	9.91	0	: 441	0	: 763	0	15
AAE275901	1.91	1.75	.086	: 439	8	: 591	9	: 9

		COT (%)			ł	TMax (*)	C)	ł	IH		ł	10
	Code	Rbr	Rex	Re+As	1	Rex	Re+As	1	Rex	Re+As	:	Rtr
AAF	AAF312603	2.44	1.36	.09	1	433	420	!	528	8	;	19
	AAF312743	7.34	6.81	.162	ł	442	416	ł	762	1031	l	24
	AAF312803	12.13	11	.524	ł	440	468	t	655	8	!	23
	AAF312863	11.73	10.85	.175	ł	445	436	;	715	0	ł	21
	AAF313053	2.82	.6	.735	1	432	410	ł	472	459	ł	78
	AAF313223	4.25	3.67	.302	ł	443	441	;	767	917	ł	13
	AAF313473	3.94	2.88	.869	ł	432	421	ł	479	449	ł	19
AAO	AA0340556	2.2	.51	.316	ł	443	431	1	314	842	È	80
,,,,,,	AA0341006	6.69	6.11	. 409	1	445	0	ł	723	8	ł	15
	AA0345006	1.97	.42	.331	i	442	431	È	267	- 900	È	0
	AA0345106	2.02	.68	.392	Ì	439	421	ì	251	556	ì	223
	AA0346106	2.86	.58	. 698	i	441	426	i.	274	870	i.	129
	AA0346306	5.58	5.29	8	i	451	0	i	789	9	i	13
	AA034B206	4.85	3.31	.567	÷	450	456	i.	629	831	i	51
	AA0348586	2.38	1.83	.237	i	452	451	i	444	747	÷	37
	AA0351556	2.4	1.59	.32	i	447	446	i	777	759	į	99
	AA0351986	7.65	6.43	.527	ì	449	446	i.	473	A17		0
	440353384	4.13	2 76	. 674	÷	478	441	i	רדר דדר	774	i	, 17
	440353586	3.2	1 7	1 124	÷	449	444	1	415	770		
	AA0757756	5 79	7 75	010	÷	440	451	:	415	017	:	71
	AA0355904	A 1	A 74	945	1	445	466	1	700	001	ь 1	50
	AAA754004	6.1	4.00	, /TJ 02	;	467	440	:	100	1000	;	14
	AA0754104	4 57	4 05	• 7 Z	-	450	471		440 .	1000	1	14
	AA0754704	0.13	4.7.	1 27	1	475	4.50		470	000	1	14
	ANOTELARL	0.02 -1 50	0.JD	1.27	ì	433	1 0	i	101	700	i	16
	MAU330400	0.37	4.00	1.202	i	443	441	i	348	000	i.	10
	AAU308106	1.3	.0	.20/	i	443	431	1	233	600	1	135
ААР	AAP037203	9.18	3.7	.143	1	402	0	i.	482	245	1	48
	AAPOOJOOJ	6.83	6.33	.233	1	AND 101	8	i.	519	0	i.	39
	AAP06/201	8.41	8.15	.131	÷	401	8	1	586	10 700	i.	27
	AAP0/DU03	7.57	6.94	.46/	÷	403	8	1	659	784	i.	34
	AAPU/8603	7.15	6.62	.356	1	393	0	1	578	8	I.	33
	AAPOBSOOS	3.98	3.98	0	1	386	8		506		1	35
	AAPUBSUUS	2.01	3.31	0	1	389	0	Į.	377	0	ł.	41
	AAP087063	3.09	2.91	.124	1	389	416	i.	410	0	ł.	36
	AAP08/011	6.38	6.2	.062	1	401	0	;	573	0	;	34
	AAP091003	9.87	8.74	.175	÷	412	401	1	660	0	1	43
	AAP095403	6.5	6.41	.007	÷	412	0	;	689	8	ł	33
	AAP098603	8.09	7.79	.209	1	411	421	ł.	618	0	t.	40
	AAP103003	10.38	9.91	.292	;	411	416	ł	649	925	1	40
	AAP184603	9.83	9.21	.428	ł	411	406	1	631	1058	ł	41
	AAP111003	6.75	6.32	.354	÷	412	416	ł	610	658	ł	35
	AAP113803	6.36	6.02	.339	;	400	431	;	539	764	ł	43
	AAP115203	4.84	3.74	.25	ł	414	406	ł	479	852	ł	50
	AAP119003	6.19	5.91	.25	ł	415	0	ł	605	368	L	53
	AAP123003	5.85	6. 8 2	0	ł	413	0	ł	502	0	L	46
	AAP254671	1.04	.73	.121	ł	451	441	ł	334	975	Ľ	319

		COT (7.)		;	inax	(-0)	'	111		'	10
	Code	Rbr	Rex	Re+As	;	Rex	Re+As	1	Rex	Re+As	;	Rtr
7	AKA116283	1.26	.13	.211	;	0	436	:	8	1071	;	8
`	AKA116653	.72	.14	.176	1	0	436	- 1	9	795	- 1	0
	AKA117153	1.64	. 88	.329	!	0	431	1	8	830	;	8
	AKA118253	1.88	.11	.377	1	0	431	;	8	826	ł	0
	AKA118643	2.03	.1	.691	:	0	8	;	8	973	- 1	8
	AKA119153	. 89	. 89	. 698	;	8	8	;	8	8	1	9
1	ALA127223	1.87	.07	.543	;	0	431	;	0	615	1	8
•	ALA127333	1.68	.07	.458	- 1	0	431	:	8	701	- 1	0
	ALA127363	.94	. 88	.273	1	8	431	;	8	684	:	0
	ALA129633	1.45	.16	.374	:	0	431	- 1	9	642	- 1	8
	ALA131943	9	8	8	- 1	8	8	;	8	8		0
	ALA132003	0	8	8	ł	9	6	;	0	8	:	8

ANNEXE V.1.3.

ANNEXE V.1.3. INDICES IT, IM, IPE ET IMA; POTENTIEL PRODUIT ET MIGRE

	CODE	11	IM	TMAX	IHo	Ін	IH%	IPE	IKB	IMA	\$ 20	S2	52pr	S2ma
ΑΑΑ	AAA170803	2.5	1.5	425	439	377	86	.15	.38	.23	17.04	14.42	2.62	6.28
	AAA175003	2.4	1.7	427	489	426	87	.14	.36	.21	24.86	21.33	3.53	8.29
	AAA188703	6	8	281	0	8	100	8	8	0	.85	.85	0	.01
	AAA189103	0	8	267	400	400	190	0	9	0	.64	.04	6	.83
	AAA189263	8	0	241	300	300	100	0	0	8	.96	.06	0	8
	AAA190103	8	0	267	0	0	100	9	0	8	8	0	8	.04
	AAA190203	8	0	228	0	0	100	8	0	0	.82	.82	6	.01
	AAA191163	0	0	224	0	0	100	e	8	0	.01	.01	0	.83
	AAA199983	8	8	262	0	8	188	8	8	0	.86	.86	0	0
	AAA200113	8	e	438	8	8	100	0	8	8	1.99	1.99	8	8
	AAA200143	2.4	2.8	438	492	371	76	.27	.27	8	1.42	1.04	.38	8
	AAA200153	2.6	2.1	431	363	269	74	.29	0	29	2.03	1.45	.58	58
	AAA200573	2	3	443	630	428	68	.69	0	69	15.99	5.81	18.98	-10.98
	AAA208532	1.1	2.6	445	948	756	80	.32	8	32	46.98	32.14	14.84	-14.84
	AAA200673	0	8	385	37	37	190	0	.68	. 68	.87	.07	8	.15
	AAA200832	3	8	296	135	135	100	0	8	0	.35	.35	0	6
	AAA201103	8	Ø	225	0	6	100	0	8	8	.03	.03	8	0
	AAA201403	2.2	3.3	445	582	289	50	.59	0	59	4.55	1.85	2.7	-2.7
	AAA201523	1.3	1.7	432	B 67	754	87	.25	0	25	38.32	28.73	9.59	-9.59
	AAA201533	2.2	2.6	43é	543	418	77	.29	.49	.2	2.29	1.63	.66	.88
	AAA201553	2.4	3	441	489	298	61	.43	8	43	3.8 3	1.73	1.3	-1.3
	AAA201733	2.4	2.7	438	4 47	322	72	.31	8	31	1.07	.74	.33	33
	AAA201823	0	6	439	8	0	199	0	9	0	7.35	7.35	0	8
	AAA201923	1	1.5	437	967	861	89	•26	.15	11	71.41	52.93	18.48	-9.5
	AAA202383	1	1.3	438	1000	941	94	.15	.11	05	122.79	104.19	18.6	-6.31
	AAA202533	0	8	271	6	8	100	8	1	1	0	8	8	.22
	AAA282773	2.4	3.1	443	498	278	55	.49	.21	29	1.59	.81	.78	57
	AAA284223	0	8	222	140	148	100	8	0	8	.07	.07	8	.08
	AAA286553	2.2	3.2	444	582	337	58	.51	.21	-,3	15.37	7.58	1.19	-5.79
	AAA257003	2.1	2.9	441	638	435	69	.36	.29	07	12.2	1.78	4.42	-1.22
	AAA28/443	0	8	2/1	29	24	100		6	N N	.02	.62	8	.04
	AAA268163	8	e D	4J3 700	8	۴ ۳	186	6	1	1	۵ ۵	۳ ۳	8	.20
	AAA302283	6	0	322	223	223	102	6	.03	, 8 3	.27	.27	10	.01
	AAA300123	ю • •	10 7 1	340	040	51/	100	C (7	10		•12 70.07	*12	24 70	-24 70
	AAA70:407	1.1	3.1	404	746	310	23	.0J	0	03	30.0/	14.47	75 41	-24.30
	AAA701717	1.1	J.J	431	740	101 200	100	.07 a	a	07	1	10.77	0.41	-97.47
	MH200103	e	Ð	377	200	200	100	•	U	U	• 1	• •	v	
AAG	AA6200543	2.6	2.3	433	388	271	71	.32	.86	26	11.47	7.85	3.64	-3.13
	AAG202103	2.4	2.8	439	4 67	322	69	.34	.1	24	4.01	2.64	1.37	-1.08
	AA6202413	2.2	2.8	439	528	375	71	.36	.87	27	3.46	2.21	1.25	-1.02
	AAG202913	2.5	1.3	428	426	387	91	.1	.42	.32	1.03	.93	.1	.58
	AA6203133	2.4	2.8	439	446	388	69	.34	.24	1	4.16	2.74	1.42	55
	AAG217843	2.4	2.8	439	490	365	/5	-28	.12	16	/.4]	5.33	2.68	-1.36
	AA6223443	2.2	3	442	218	321	62	-46	.02	44	3.59	1.8	1.54	-1.51
	AA6223723	2.5	2.3	433	438	323	()	.28	. 35	.07	4.04	3.27	1.22	.01 D.DC
	AAC004/57	1.1	1.7	437	790	814	87	.44	.07	13	70.8	33,43	10.01	-17 04
	AAG205107	∡ 1 ⊡	2.7	443	0/8 700	901 570	60 75	.67	.17	5	20.03 דל דל	12 07	17.24	-14 27
	AAC221123	1.7	7	440	107	132	100		.11	-,40	21.13	12.07	13.00	-14.23
	ANG220013	, ,	5 74	461	90a 91	71 700	100 81	75	.13	- 16	100 50 04	76 04 100	19 10	-9.04
	AA6007017	د.ن	2.0	441	0710	720	67	. JJ 07	10	- 2	1202.10	77 00	10.10	-74 21
	AA5277427	1	1 5	442 447	1000	101	02	• J7 75	• 1 7 Ø 4	- 21	50.0	73.00	12 54	-19 00
	ANG227020	17	2.6	474	1000 R41	704	70 82		14	- 2	85.7	57.34	28.34	-19.4
	AAG272757	1.3	1.9	430	998	765	86	27	. 1	- 17	56.77	A1.64	15.17	-10.67
	AAG232993	1.3	1.9	475	898	764	84	.27	.12	15	65.52	47.93	17.59	-11.31
	AA6277277	1.3	1.9	474	885	752	85	.28	.05	23	77.66	55.44	22	-18.97
			•• /	107	000	122						22.00		//

LEGENDE DE l'ANNEXE V.1.3 - Résultats de la caractérisation géochimique quantitative des échantillons du Bas Zaïre - Angola.

II: Indice de Type, IM: Indice de Maturité, IMax: Température IMax du pic S2 des roches à kérogène extraites, IH_o: Indice d'Hydrogène initial (mg HC/g Corg.), IH Indice d'Hydrogène de la roche extraite, IH²: (IHx100)/IH_o, IPE: Indice de Production Estimée, IKB: Indice de Production Observée, IMA: Indice de Migration (IKB-IPE), S2_o: Potentiel pétrolier initial (mg HC/g roche), S2: Potentiel pétrolier de la roche à kérogène extraite, S2_{pr}: Potentiel pétrolier produit (S2_o-S2), S2_{ma}: Bitume migré.

1	CODE	17 =======	IM TELES	TMAX	IHo ======	1H 	IH%.	IPE	IKB	AMI	\$2o	52	S2pr	S2ma
1	AAE060001	2.4	.4	393	523	523	180	8	.07	.07	19	18.97	.03	1.46
1	AAE064001	2.4	1.3	419	483 647	449	93	.08	.96	02	3.99	3.69	.31	09
1	MAE000001	2.2	•/	408	243 205	507	100	10 (3.4	-107 107	-107 07	1/.1/	1/.1/	۲ ۲	1.60
4	AAE076001	1.9	1.1	415	675	634	94	. 18	.07	11	46.01	37.8	8.21	-5.25
1	AAE080001	1.6	.5	408	768	768	100	.01	.02	.01	33.43	33.08	.35	.46
ł	AAE084001	2	.7	407	642	623	97	, 1	.14	. 84	31.78	28.53	3.25	1.33
1	AAE088001	2.2	1.1	414	530	519	9 8	.03	.11	.09	8.33	8.1	.23	. B1
1	AAE100001	2	1.1	416	650	605	93	.21	.07	14	27	21.29	5.71	-4.07
1	AAE104001	2.2	1.1	415	542	526	97	-104	.107	.03	19.06	18.31	.75	.6
	AAE100001	2.1	1.1	415	574	520	رو 79	- 100 194	.i 05	. 124	14.73	18.00	1.19	.9
1	AAE116001	2.5	.7	407	417	413	99	.01	.11	.1	9.56	9.46	.1	1.03
1	AAE124001	2.7	2.1	431	268	188	70	.33	.12	21	2.91	1.95	.96	69
ł	AAE128001	2.8	2.1	431	256	176	69	.31	.14	17	1.74	1.2	.54	~.35
1	AAE132001	2.8	2.3	432	237	159	67	.33	.26	87	2.13	1.43	.7	2
1	AAE136001	2.8	2.6	432	199	133	67	.33	.29	84	1.07	.72	.35	06
1	AAE1400001	2.1	2.0	433	251	167	64 77	.4 27	.102	38	1.//	1.0/	./	68
1	AAF148101	3	2.6	430	128	96	75 75	.25	.1	14	- 69	.52	.17	11
•	AAE152001	3	2.1	426.2	97	76	79	.21	.16	05	.53	.42	.11	03
1	AAE156001	8	0	426	20	20	100	0	.64	.64	.09	.09	8	.16
ł	AAE160001	0	8	416	58	58	100	8	0	8	.19	.19	0	8
1	AAE164001	3	2.1	426	94	74	79	.21	.12	09	.37	.29	.08	04
ł	AAE168001	3	2.3	427	80	62	78	.22	.3	.08	.3	.23	.07	.93
1	AAE172301	3	1.5	419	110	93	85	.15	.07	96	.49	.42	.107	03
ļ	AAF180201	נ ד	2.0	4340 474 7	107 97	61 49	75 49	-23	22	- 09	. 37 7	21	•1 pq	1
ł	AE184001	ē	0	416.2	67	67	160	8	P	8	.12	.12	8	.06
1	AAE190301	8	8	416.2	77	77	100	6	.9	.9	.17	.17	8	1.46
ł	AAE192073	2.9	.9	407	164	159	97	.03	.04	.01	.72	.7	.02	.01
ł	AAE 192283	2.8	1.5	422	241	198	82	.18	.79	.61	2.85	1.68	.37	5.92
f	AAE192843	2.5	1.5	426	413	351	85	.17	.5	.33	71.92	68.82	11.9	47.57
1	AAE1931/3	8	8	423	107	197	100	6	. 96	.96	./5	./5	10 0	19.22
1	AAF194293	0 2 8	.7	313.3	263	263	190	Ø	.71	.71		.33	e A	3.54
į	AAE195153	0	0	384	571	571	100	6	.13	.13	.97	.97	8	.14
•	AAE196773	2.9	0	322	234	234	100	0	8	8	1.57	1.57	9	8
f	AE198303	2.8	0	349	293	293	100	8	.1	.1	1.64	1.64	0	.18
1	AAE198601	3	2.1	426	93	74	79	.21	.87	14	.32	.25	.07	05
f	AE200001	6	0	429	17	17	100	· 8	.96	.96	.04	.84	0	1.02
1	882206801 882206801	ю а	0 0	431	19	19	100	10 Q	.73 57	.73 57	.17	.19	ю А	2.35
1	AAE201801	8	8	8	17	17	100	ē	8	8	.03	.03	8	0
1	AE202203	2.1	2.6	435	591	461	78	.26	.94	.68	2.55	1.89	.66	26.71
1	AAE202573	2.8	8	325	317	317	160	0	. 65	.05	1.3	1.3	8	.07
ļ	AE202593	2.6	1.5	426	375	308	82	.2	. 37	.18	6.48	5.2	1.28	1.82
1	AAE203013	2.4	1.9	429	498	430	88	.13	.18	•05 7/	15.2	13.16	2.04	.84
Ĵ	AAE203303	2.8	۲ ۵	3407	310	310 A20	100	0	./4	.74	102	.82	10 0	2.3
1	MHE203713	2.6	2.3	540	447 440	427	89	.22		•22	11.19	B.73	€ 2.46	1.87
ì	AAE205703	2.5	3	441	431	198	46	.59	.68	.09	2,59	1.07	1.52	.71
ł	AAE206733	3	3	43B	131	89	68	.32	.84	.51	.59	.4	. 19	1.84
1	AAE208601	0	0	431	39	39	100	8	.87	.87	.13	.13	8	.88
ł	AE218681	3.5	2.9	433	75	54	72	.28	.74	. 46	.28	.2	.88	.5
1	AAE267443	2.1	3.2	444	584	345	59	.47	.76	.29	1.89	1	.89	2.25
1	AAE26/663	2.1	1.9	428.75 470	320 770	241	/5 51	•2/ 54	.11	16	4.14 A DO	Z.94	1.1	/3
1	MEZO/773	2.7	1.3	421.2	207 285	245	84	, 14 , 15	.37	. 19	1.27	1.09	. 19	-1.01
i	AAE271201	e.,	8	348	32	32	100	8	8	8	.08	.08	6	.11
1	AAE271481	0	8	441	16	16	100	6	e	ē	.84	.04	8	.14
4	AAE271601	8	0	0	26	26	190	0	8	6	.05	.05	8	0
ł	AAE272001	0	8	0	8	0	100	Ø	8	8	.07	.07	8	0
1	AAE272401	1.7	2.8	442	735	544	74	.54	.05	49	155.87	72.36	83.51	-80.88
1	AAE273001	1.3	2.6	441	898	705	79	.3/	.22	-,15	142.1	89.09	53.01	-27.96
1	MAE2/3501	1.5	1.0 2 1	441	8710 847	1210 641	01 78	, 30 , 61	.1	- 28	232.26	104 54	810.81 ד⊿רך	-67.78
1	AAE274401	1.7	2.6	438	763	595	78	,47	.19	29	179.01	89,31	73,43 80.7	-59.5
ì	AAE275201	1.4	2.6	439	853	665	78	.41	.14	27	54	31.74	22.26	-17.11
1	AAE275801	1.1	2.1	440	940	780	83	.28	.15	13	84.41	68.85	23.56	-12.53
1	AAE276201	1.1	1.9	439	940	797	85	.25	.11	14	74.86	55.93	18.93	-12.12
1	AAE276601	1	2.1	442	941	822	85	.33	.14	19	92.02	61.26	30.76	-20.53
1	AAE277001	1.1	2.6	443	916	733	88	.32	.18	14	73.5	49.85	23.65	-12.89
1	AAE277401	1.1	2.3	441	948 071	775 דור	67 67	•29 20	.12	17	68.24	42.92	17.32	-11.46
1	HHEI//801	1•1	2.3	441	104	163	04	• 27	. 14	15	107.12	12.63	31.49	-18.91

ANNEXE V.1.3.

	CODE	17	IM	TMAX	IHo	IH	IH%	IPE	IKB	IMA	S2o	S2	52pr	S2ma
AAF	AAF312683	2	2.6	433	652	528	81	.48	.68	.2	13.87	7.18	6.69	8.8
	AAF312743	1.1	2.3	442	940	762	81	.31	.1	2	74.87	51.89	23	-16.95
	AAF312803	1.4	2.6	448	851	655	77	.43	.15	27	125.86	72.06	53.8	-40.59
	AAF312863	1.1	2.6	445	916	715	78	.35	.19	16	119.27	77,55	41.72	-24.83
	AAF313053	2.1	2.3	432	575	472	B 2	.21	.88	.67	3.6	2.83	.77	20. 28
	AAF313223	1.1	2.6	443	940	767	82	.3	.18	12	40.18	28.15	12.03	-5.95
	AAF313473	2.1	2.3	432	584	479	82	.21	.31	.1	17.53	13.79	3.74	2.43
ΑΑΟ	AA0340556	2.2	3.1	443	550	314	57	.52	.92	.41	3.3	1.6	1.7	17.32
	AA0341006	1.1	2.6	4 45	9 26	723	78	.35	.15	2	67.9	44.15	23.75	-16.02
	AA0345026	2.4	3	442	485	267	55	.49	.94	.45	2.21	1.12	1.09	16.41
	AA0345106	2.5	2.8	439	440	251	57	.47	.89	.42	3.23	1.71	1.52	11.96
	AA0346106	2.4	3	441	449	274	61	.43	. 91	.48	2.78	1.59	1.19	14,17
	AA0346306	1	2.7	451	985	7219	72	.53	.14	4	80.26	37.52	42.74	-36.79
	AA0348206	1.3	2.8	450	890	628	76	.51	. 44	86	41.49	28.51	28.98	-4.68
	AA0348586	1	3.3	452	646	446	69	.57	.4	17	18.95	8.16	10.79	-5.29
	AA0351556	2	3.3	447	636	337	53	.84	.61	23	32.49	5.36	27.13	-18.87
	AA0351986	1.3	3.2	449	890	473	53	. 69	.27	41	97.85	39.42	66.63	-55.15
	AA0353386	2.4	2.7	438	462	222	72	.31	.6	.29	13.27	9.19	4.08	9.6
	AA0353586	1.4	3.3	448	840	415	4R	. 75	.77	.82	21.62	5.39	16 27	1 49
	AA0353754	2	2.8	440	478	444	77	42	59	- RA	40 72	15 41	25 11	-7.94
	440755894	2	3 2	445	479	705	42	74	51	- 25	70 55	17 74	57 71	-75 64
	AA0354884	1 9	3.2	447	792	429	41	76	51	- 25	74,00	10 70	57 2	-33.40
	AA0356106	1 7	7 1	450	000	401	54			~ 24	70.70	27.57	J7.12 47 07	-30.77
	AA0754704	2	21	475	474	501	70	.00 50	•• 70	- 17	12. 34	70.05	75 64	-14 54
	AA0754A04	2 1	2.0	445	470	710	/7 55		. 37	-,13	00.31	32.00	33.40	-14.34
	AA0750104	2.1	3.2	443	636	040	22	• 31		01	33.43	10.27	1/.10	/4 E //
	AAD050007	2.4	3.1	443	4/0	200	47	, 30	.65	.28	3.10	1.9	1.75	3.10
AAP	AAP037203	2.4		402	482	482	100		•4	•2	1/.83	17.83	.02	4.34
	AAD2/3003	2.3		400	317	317	100		.10	.10	32.86	32.86	8	6.00
	AAP26/201	2.1	••	40) 107	286	286	166		.86	.86	4/.//	4/.//	и	3.19
	AAP0/2003	2	• • •	403	609	639	100	.82	.11	. 67	46.43	45.7	.73	4.8/
	AAP078603	2.2	•	393	5/8	578	186		.15	.15	38.27	38.27	8	6.79
	AAPU83003	2.3	.3	386	556	556	166	8	.13	.13	22.14	ZZ. 14	6	3.23
	AAPUSSUUS	2.6	.3	389	3//	3//	166	8	.13	.13	12.48	12.48	6	1.83
	AAP108/1003	2.5	.3	389	410	410	100	8	.15	.15	11.94	11.94	8	2.18
	AAP08/011	2.2	.5	401	5/3	5/3	166	8	• 1	•1	35.55	35.55	8	4,03
	AAP091003	1.9	.9	412	695	660	95	.15	.89	- 86	68.09	57.67	10.42	-4.75
	AAP095403	1.7	.9	412	740	689	93	.18	.85	13	53.94	44.14	7.8	-7.33
	AAP078603	2	.9	411	651	6 18	95	.16	.08	68	57.34	48.16	9.18	-5.11
	AAP103003	1.9	.9	411	6 76	649	96	.13	.97	8 6	73.54	64.29	9.25	-4.43
	AAP104603	2	.9	411	664	631	9 5	.16	.1	86	69.16	58.07	11.09	-4.28
	AAP111003	2	.9	412	642	618	95	.16	.88	08	45.83	38.55	7.28	-4.05
	AAP113803	2.3	.5	486	539	539	168	8	.07	.07	32.47	32.47	8	2.6
	AAP115283	2.4	1.1	414	498	479	7 8	.03	.13	.11	18.37	17.9	.47	2.26
	AAP119803	2	1.1	415	651	685	93	.21	.03	1B	45.45	35.78	9.67	-8.4
	AAP123823	2.3	1.1	413	502	582	190	8	.12	.12	38.27	30,22	.65	4.22
	AAP254671	1	3.7	451	464	334	72	.53	.58	.05	5.22	2.44	2.78	. 65

	CODE	11	IM	TMAX	IHo	IH	IHX.	IPE	IKE	IMA	52o	52	S2pr	S2ma
ΑΚΑ	AKA116203	8	8	411.1	238	239	100	8	.98	.98	.31	.31	8	13.19
,,.	AKA116653	8	e	431	121	121	182	8	.97	.97	.17	.17	e	6.21
	AKA117153	8	6	438	213	213	100	8	.99	. 99	.17	.17	8	17.38
	AKA118253	e	8	43B	245	245	100	8	.99	.99	.27	.27	e	19.66
	AKA118543	8	8	265.1	8	8	100	8	1	1	9	e	Ø	21.47
	AHA119153	6	8	298	88	88	100	e	Ø	8	.07	.07	6	.05
ALA	ALA127223	8	8	258	43	43	183	8	1	1	.03	.03	0	18.3
	ALA127333	0	· Ø	256	86	Bé	102	5	ì	1	.06	.06	0	16.91
	ALA127363	8	0	245	13	13	102	B	1	1	.01	.01	e	8.54
	ALA129633	0	e	326	31	31	183	e	1	1	.05	. 85	6	13.3
	ALA131943	0	8	265.1	8	6	100	8	0	B	. 81	.81	8	.02
	A: A132823	8	8	255	A	Р	169	8	ρ	P	P.	6	A	. 83

ANNEXE V.1.4. PARAMETRES CINETIQUES DES COURBES DE PYROLYSE

CINETIQUE SUR S2 (Kérogéne)

CINETIQUE SUR S2' (Résines & Asphaltènes)

	Code	Ea	n	Log A	e	d⊺∕m	Ea(T)	dE	Ea	n	Log A	e	dīm	Ea(T)	dE
ΑΑΑ	AAA170803	61.48	1.6	17.85	.29	2======= 0	55.98	5.5	41.2	.81	13.65	.73		16.46	24.74
	AAA175003	54.82	1.45	16.13	.23	0	4B.37	6.45	38.31	.93	12.12	1.1	6	48.23	9.92
	AAA188703	0	Ø	6	Ø	0	0	0	ß	0	8	0	6	8	0
	AAA189103	0	0	0	0	0	0	0	8	8	Ø	₽	B	0	8
	AAA189263	0	0	0	0	0	0	0	Ð	8	0	0	6	6	0
	AAA190103	0	0	0	0	0	8	8	8	0	0	0	8	0	Ð
	AAA190203	0	0	0	0	0	0	0	8	9	0	9	8	6	8
	AAA191163	Ø	Ð	8	8	0	0	8	Ø	8	8	8	0	8	8
	AAA1999Ø3	8	8	0	8	0	0	0	8	8	8	0	6	8	6
	AAA200113	75.27	1.64	21.66	.07	9	75.31	.04	0	0	0	0	0	6	0
	AAA200143	73.24	1.85	20.5	1.48	11.3	92.24	19	8	e	8	8	6	8	0
	AAA200153	46.23	1.43	13.74	. 47	8	47.7	1.47	0	0	0	8	0	0	8
	AAA200573	58.2	1.55	16.76	.16	5.7	55.56	2.64	0	8	8	0	6	0	0
	AAA200632	61.2	1.22	18.23	.15	8	67.23	6.03	9	0	0	0	0	0	0
	AAA200673	9	0	0	8	8	0	0	8	0	0	0	0	8	8
	AAA200832	8	0	8	8	0	0	8	0	0	0	0	8	8	8
	AAA201183	6	6	0	0	8	8	8	0	6	0	8	8	0	9
	AAA201403	38.11	1.7	18.56	.55	6	42.12	4.01	8	8	0	9	0	9	0
	AAA201523	61.99	1.69	17.9	.12	5.7	68.4	1.59	6	0	0	0	0	0	0
	AAA201533	47.48	1.3	13.78	.33	8	42.06	5.42	46.44	1.16	13.83	1.29	8	51.25	4.81
	AAA201553	51.27	1.51	14.78	.28	5.7	51,83	.56	8	0	6	6	8	0	0
	AAA201733	8	0	8	0	8	0	0	8	0	8	8	0	0	0
	AAA201823	6	8	8	0	0	0	0	6	6	0	0	6	0	8
	AAA201923	52.67	1.23	15.69	.24	8	47.96	4.71	0	0	0	8	0	0	8
	AAA202363	56.53	1.16	16.88	.48	0	65.7	9.17	8	0	8	0	0	0	0
	AAA202533	0	8	0	0	8	8	0	Ø	0	8	0	0	0	6
	AAA202773	e	0	e	0	8	8	e	0	8	6	0	6	8	6
	AAA284223	6	8	8	8	8	6	8	0	0	0	ø	8	6	e
	AAA286553	54.14	1.5	15.39	.19	5.7	52.34	1.8	8	8	6	0	0	8	8
	AAA287003	65.08	1.65	18.31	.91	8	65.92	.84	44.29	1.03	13.56	1.18	0	59.6	15.31
•	AAA287443	0	0	0	8	8	8	0	0	8	8	8	0	8	8
	AAA288163	0	8	8	8	6	0	8	0	0	0	8	0	0	0
	AAA302283	8	8	0	0	0	0	8	0	6	0	0	8	6	8
	AAA326123	0	8	0	8	0	0	0	8	8	8	8	0	6	0
	AAA386313	54.08	1.58	15.05	.2	8	58.35	4.27	0	0	8	0	8	0	6
	AAA306403	63.52	1.86	17.31	.15	0	63.78	.26	0	9	0	Ø	8	8	8
	AAA306763	6	0	0	0	6	8	0	0	0	8	0	0	8	0
AAG	AAG200543	42.29	1.15	12.79	.57	0	41.46	.83	8	0	8	0	8	0	0
	AA6202103	44.05	.92	13.61	.59	0	44.66	.61	46.1	.88	14.64	2.35	0	36.94	9.16
	AAG202413*	33.5	.84	10.74	1.81	11.3	26.29	7.21	0	6	Ø	6	e	0	e
	AA5202913	0	9	0	8	8	8	8	8	0	0	9	0	0	8
	AA6203133	40.75	.9	12.81	.35	5.7	41.21	.46	31,33	.46	11.36	.42	5.7	34.95	3.62
	AAG217843	44.65	1.11	13.52	.29	11.3	39.56	5.09	8	0	6	8	8	8	8
	AAG223443	44.65	1.56	12.55	.55	8.6	39.92	4.73	0	6	8	6	0	8	8
	AAG223723	35,22	.77	11.55	.36	5.7	37.08	1.86	e	6	6	8	6	8	0
	AA6224123	49.92	1.36	14.66	.12	5.7	46.23	3.69	0	6	8	0	6	6	6
	AA6224653	43.23	1.09	13.07	.19	5.7	43.54	.31	42.3	1.1	13.41	.45	8	47.28	4.98
	AA6225123	44.65	1.1	13.52	.29	11.3	39.56	5.89	0	0	8	0	0	0	e
	AA5226613	51.8	1.9	14.38	.31	0	52.51	.71	0	8	0	0	8	6	e
	AA5227033	59.64	1.35	17.42	.1	5.7	54.48	5.16	50.26	.56	16.79	.64	8	56.51	6.25
	AA5227213	52.08	1.16	15.51	.11	5.7	52.22	.14	50.79	.69	16.67	.18	8	76.5	25.71
	AAG227623	60.8	1.36	17.78	-1	5.7	59.13	1.67	8	8	6	0	6	6	0
	AAG232503	47.26	1.17	14.23	.13	8	51.15	3.89	0	0	e	0	8	8	8
	AAG232753	54.37	1.41	15.91	.13	5.7	54.13	.24	0	0	0	6	0	8	6
	AAG232983	47.34	1.22	14.23	.13	5.7	47.31	.83	51.29	.83	16.28	.64	5.7	51.5	.21
	AAG233233	54.88	1.34	16.16	.11	0	55.94	1.06	0	6	6	ø	e	0	e

LEGENDE DE l'ANNEXE V.1.4 - Paramètres cinétiques des courbes de pyrolyse comparative du kérogène et des résines & asphaltènes des échantillons du Bas Zaïre - Angola, calculés selon la méthode de *Freeman & Carroll*. Paramètres cinétiques *Ea*: Energie d'activation (Kcal/mole), *n*: Ordre de réaction, *Log A*: Facteur de fréquence (s⁻¹). Paramètres d'ajustement des courbes de réaction théoriques aux courbes de pyrolyse expérimentales *e*: Ecart calculé selon Braun & Burnham (1986), *dT*: Ecart de température au sommet du pic d'hydrocarbures (°C), *Ea(I)*: Energie d'activation calculé par la méthode de la dérivée seconde nulle (Kcal/mole), *dE*: Ecart entre Ea et Ea(I), en Kcal/mole. CINETIQUE SUR 52 (Kérogène)

CINETIQUE SUR	S2'	(Résines	Ł	Asphaltènes)
---------------	-----	----------	---	--------------

	Code	Ea	n	Log A	e	dī/m	Ea(T)	dE	Ea	n	Log A	e	dT∩m	Ea(T)	ďE	
AAE	AAE05000:	16.99	1.02	5.98	.18	23	13.71	3.28	0	0	0	8	0	0	8	
	AAE064001	22.12	1.2	7.04	.13	2.9	24.19	2.87	0	0	e	8	0	8	0	
	AAE068001	22.52	1.36	6.96	.88	5.7	22.52	0	8	0	9	0	8	0	0	
	AAE072001	20.48	1.09	6.83	.11	5.7	21.85	1.37	6	Ø	0	0	0	6	8	
	AAE076001	23,26	1.12	7.61	.07	0	26.26	2.8	8	0	8	0	0	0	0	
	AAE080001	24.86	1.3	7.8	.07	5.7	24.49	.37	8	0	8	0	0	8	0	
	AAEOOOOO	29.37	1.34	1.62	.107	5.7	23.07	1.32	0	6	6	Ø.	8	0	8	
	AAE 1000001	29 97	1 29	0.00 8 94	.10	J./ B	17.22 20 10	• 70 71	10 A	10	8	۵ ۵	0	ю А	ю 0	
	AAF 104001	24.39	1.15	7.82	.09	5.7	27.10	.32	e A	e A	8	0	0	R R	0 0	
	AAE 108001	28.61	1.27	8.89	.14	5.7	29.67	1.06	ด้	Ř	A	ด้	A	ñ	Å	
	AAE112001	19.41	.92	6.77	.14	11.5	19.26	.15	6	8	8	0	8	0	8	
	AAE116001	22.43	1.11	7.47	.89	11.5	21.13	1.3	8	0	0	8	8	8	0	
	AAE124001	31.23	1.14	9.77	.15	2.9	33.34	2.11	Ø	0	0	0	0	0	0	
	AAE128001	31.43	.98	10.16	.13	5.7	31.02	.41	Ø	8	0	0	8	8	Ð	
	AAE132001	29.87	.88	9.87	.16	2.9	31.43	1.56	0	e	0	0	0	8	e	
	AAE136001	38.31	1.21	11.78	.18	2.9	53.66	15.35	6	0	8	6	8	0	8	
	AAC140001	78.87 D	1.03	9.20	• 22	2.7	27.4	,) U A	0	0	9 9	2	0	0	6	
	AAF148101	2	R	0	0 0	e A	e a	0	0	8	e A	1º A	A	е р	a	
	AAE152001	8	ē	0	8	0	ē	8	8	A	ñ	P	0	ē	8	
	AAE 156001	e	6	e	0	8	8	8	ē	e	ē	ē	e	6	8	
	AAE160001	8	8	0	B	0	8	B	0	0	0	0	0	6	B	
	AAE164001	0	6	8	6	6	0	8	8	8	Ø	0	0	0	8	
	AAE168001	6	8	0	6	8	0	0	0	0	Ð	6	0	0	9	
	AAE172301	6	8	8	8	6	6	6	8	0	0	0	8	0	8	
	AAE176001	6	0	6	0	0	0	0	0	0	8	0	8	8	0	
	AAE 186201	н 0	0	8	8	0	8	0	8	0	e	8	0	8	6	
	AACIGATAI	ič n	0	6	0	10 A	6	8	0	8	6	6	8	8	6	
	MAE 170301	10 10	ю р	0	0	ю А	ю А	8	ю А	e a	N D	D D	.¥C 0	e A	ю А	
	AAF192263	33.85	1.17	19.61	. 49	115	29 B	e 4 05	40.002	102	12.59	29	57	195	е 52	
	AAE192843	43.35	1.85	12.84	.01	8	45.75	2.4	46.55	1.48	13.86	.21	A	51.35	4.8	
	AAE193173	0	0	0	0	8	6	0	38.4	.73	12.65	.23	8	41.69	3.29	
	AAE193793	8	0	e	0	ß	8	0	0	8	8	0	8	8	6	
	AAE194293	e	8	e	ß	0	0	0	33.34	.75	11.17	.64	0	41.43	6.29	
	AAE195153	0	9	0	0	8	0	8	0	0	8	9	9	9	0	
	AAE196773	0	e	8	8	e	Ð	0	0	6	8	6	0	8	6	
	AAE198383	0	0	e	8	B	0	0	0	8	0	0	8	6	6	
	AAE198681	e	6	e o	ю С	0	8	6	0	6	e	6	8	e.	8	•
	AAECOODEL	ю 0	10 0	e a	ic A	10 0	ю А	0	6	6	ic o	0	ю a	u a	0	
	AAE200001	8	e a	e R	e a	a	C A	0 A	e A	с А	D A	e A	e A	e A	e A	
	AAE201801	0	0	6	8	a	0	8	8	8	ē	a	0	8	8	
	AAE201203	8	ē	e	0	0	e	8	49.21	1.07	15.2	.53	8	50.67	1.66	
	AAE222573	e	e	8	0	8	0	8	8	6	0	8	6	0	6	
	AAE2@2593	41.9	1.22	12.92	.27	5.7	42.58	.68	30.83	.76	10.78	1.6	5.7	36.93	6.1	
	AAE203013	64.21	1.53	18.97	.23	6	68.41	4.2	8	6	0	8	0	ß	8	
	AAE203303	6	e	6	0	0	8	6	e	0	0	0	8	6	8	
	AAE203/13	8	6	6	6	6 . 5 7	6 57 00	1	ič vo n	6	8	e	6	10 5 4 7 7	0.00	
	AAC:0+183	57.82 47.40	1.00	10.07	.10	57	34.72 45 45	2.7	40.0 54 41	. 77	15.71	.3	⊃. <i>i</i> R	31.02 20 0%	14 77	
	AAE206703	59.89	1.24	18.83	.1	P. 1	75.41	15.52	27.01 P	a 1.71	10.74 Ø	., a	D.	о <u>с, -</u> -	2	
	AAE 205of 1	8	0	8	8	e	8	0	8	ê	0	0	6	8	8	
	AAE210601	0	0	0	0	6	8	0	8	ø	e	0	0	0	8	
	AAE267443	0	0	6	6	0	ø	ę	45.21	1.21	14.02	.38	0	58.12	4,91	
	AAE207003	40.23	1.80	11.12	.14	2.9	41.22	.99	0	0	0	8	0	B	0	
	AAE267993	38.12	1.61	18.75	.15	2.9	38.61	.49	8	6	e	6	0	e	ê	
	AAE268173	0	6	0	6	6	8	6	0	8	9	0	6	0	8	
	AAE171201	e	6	8	6	8	6	8	6	6	6	0	8	8	8	
	AAE2/1401	6	K A	ю л	ю а	ю а	10 0	0	ю а	ι. Γ	6	ю 0	۲ ۵	6	6	
	AVE220031	ю р	ю 0.	с 0	ю р	10 D	ю А	a	r P	U A	r A	ю 0.	r a	r a	C A	
	AAF272601	49 73	1.02	15 21	17	57	44 42	2 71	e A	C' P	ю 9	6 0	е. а	0 9	е 0	
	AAE273001	46.17	.92	14.39	.24	5.7	46.83	.14	49.54	1.85	15.61	. 27	5.7	41.32	ю В 22	
	AAE273601	44.2	.97	13.71	.23	5.7	47.29	3.89	0	8	0	8	8	8	8	
	AAE274201	47.45	.99	14.72	.19	5.7	48.32	.87	8	8	8	0	Ø	6	8	
	AAE274401	40.88	.97	12.73	.18	5.7	41.65	.77	8	6	0	8	8	0	8	
	AAE275201	51.28	1.06	15.6	.18	5.7	52.93	1.65	8	8	0	8	6	e	8	
	AAE275901	44.18	.95	13.73	.17	5.7	44.51	.33	8	8	8	0	8	6	8	
	AAE276291	49,94	1.84	15.25	.16	5.7	58.7	.76	0	8	6	6	8	8	6	
	AAE 276601	48.87	.98	15.01	.14	5.7	44.43	4.44	58.25	.75	18.62	1.24	0	39.5	18.75	
	MAL //021	50.81	• 77	15.52	.13	2 5 7	33.39 40 /	+.35 77	54.71	.54	17.81	.61	8	66.29	11.59	
	MAC. (/901	JE-3/	1	13.44	.10 }A	J./ 5 7	47.0	•// 1 A3	e A	0	8	в 9	۶ ۵	К О	۲ ۵	
	AAE278981	58.11	1,17	17.5	.?	P. (45.79	7.67	ט קק קק	۳ ۲0	0 17 45	С 65	e A	רד גע גי גע	U Q 10	
		50.11			••	•	02.10		رر .د د	.07	11.07	143	e	02.73	4.10	

CINETIQUE SUR S2 (Kérogène)

.

CINETIQUE SUR S2' (Résines & Asphaltènes)

	Code	Ea	B	Log A	e	d⊺m	Ea(T)	dE	Ea	n	Log A	e	dïm	Ea(T)	dE
	2222222222	12521277 1 57	* 64	17 00	21	2======= D	67 97		53.87	1.15	16.43	.37	R	45.59	8.28
AAF	AAE312003	50 08	1.40	15 34	.21	5.7	47.69	2.39	43.11	.9	14.32	.99	5.7	80.06	36.95
	AAF312803	56.00 56.02	1.28	19.26	.3	0	63.37	2.65	8	ß	0	8	0	0	0
	AAF312863	53.85	1.2	16.02	.17	5.7	50.14	3.71	0	0	8	8	8	0	8
	AAF313053	D	A	A	ю	0	0	0	53.11	1.69	15.36	.6	8	45.66	7.45
	AAF313223	64.78	1.38	18.91	.17	5.7	64.86	.08	0	0	8	0	8	0	0
	AAF313473	65.81	1.58	19.15	.14	8	67.54	1.73	8	0	0	0	8	8	8
A A O	440340556	35.62	.85	11.42	.34	5.7	34.94	.68	47.28	1.05	14.77	.39	5.7	47.52	.24
AAO	AA0341006	9	8	0	8	0	8	0	0	Ð	0	8	8	9	0
	AA0345006	45.98	1.44	13.36	.21	2.9	49.28	3.3	44.77	1.14	13.93	.4	8	55.42	10.65
	AA0345106	39.12	1.48	11.29	. 45	5.7	40.93	1.81	52.9	1.37	16.08	.22	5.7	54.38	1.48
	AA0346186	46.39	1.69	12.96	.37	2.9	48.88	2.49	0	8	0	8	0	8	8
	AA0346306	65.62	1.2	19.35	.13	5.7	62.12	3.5	8	0	9	0	8	9	0
	AA0348286	59.2	1.03	17.86	.28	0	61.73	2.53	8	0	0	0	0	0	0
	AA0348506	58.87	1.29	17.22	.19	5.7	61.77	2.9	36.62	.89	11.64	.28	0	44.9	8.28
	AA0351556	45.01	1.19	13.4	.28	5.7	44.18	.83	48.78	1.08	12.59	.37	0	61.58	28.8
	AA0351906	64.41	1.54	18.38	.2	Ø	67.06	2.65	0	0	B	8	0	8	8
	AA0353306	39.44	1.01	12.33	.24	5.7	42.44	3	39.98	.97	12.52	.26	5.7	36.39	3.59
	AA0353506	44.6	1.08	13.52	.28	5.7	49.14	4.54	48.92	1.02	15.08	.71	5.7	48.17	.75
	AA0353756	55.25	1.34	16.36	.23	8	59.25	4	45.54	.7	14.29	.62	8	40.47	5.07
	AA0355886	52.67	1.37	15.4	.16	5.7	56.37	3.7	40.65	.93	12.83	.26	Ð	49.28	8.63
	AA0356006	56.64	1.45	16.38	.13	5.7	56.89	.25	42.15	.94	13.33	.38	0	55.45	13.3
	AA0356106	59.02	1.3	17.29	.21	8	63.88	4.86	49.94	.94	15.72	.46	8	53.25	3.31
	AA0356306	40.87	1.11	12.65	.2	5.7	43.5	2.63	0	8	8	Ø	8	8	8
	AA0356406	50.59	1.14	15.22	.19	5.7	50.17	.42	47.9	1.19	14.53	.17	0	47.15	.75
	AA0358106	44.72	1.17	13.46	.31	0	49.32	4.6	37.79	1	12.07	.33	8	45.14	7.35
ΔΔΡ	AAP059203	28.37	1.22	6.68	. 15	5.7	20.72	.35	0	Ø	0	0	0	8	0
	AAP063003	22.53	1.2	7.33	.1	5.7	22.56	.03	32.68	.96	11.63	.38	5.7	25.84	6.84
	AAP057201	24.58	1.21	7.97	.09	5.7	25.86	1.28	8	0	0	0	8	8	B
	AAP075003	25.01	1.18	8.15	.08	5.7	24.85	.16	8	0	0	8	0	8	8
	AAP079603+	20.33	.96	7.21	. 66	11.5	35.12	14.79	0	0	0	0	8	9	0
	AAP093003	27.42	1.92	7.79	.11	0	28.26	.84	ø	ø	9	8	9	0	0
	AAP085003	27.59	1.79	8.01	.09	2.9	27.17	.42	41.1	2.14	12.6	.43	11.5	34.09	7.01
	AAP087003	30.1	2.11	8.29	.11	5.7	29.62	.48	8	0	0	0	8	8	8
	AAPC87011	17.92	.92	6.51	.1	5.7	18.11	.19	0	0	0	0	8	0	0
	AAP091003	22.23	.89	7.95	.18	9.2	21.25	.98	0	0	8	8	8	0	0
	AAP095403	25.02	1.2	8.09	.54	5.7	26.81	1.79	Ø	8	8	0	0	8	8
	AAP098503	25.76	1.15	8.32	.08	5.7	26.09	.33	0	8	0	9	8	6	0
	AAP103003	24.18	1.04	8.12	.13	5.7	25.41	1.23	0	2	8	0	8	8	0
	AAP184683	24.9	1.03	8.37	.1	5.7	26.27	1.37	0	0	8	8	0	8	6
	AAP111003	24.76	1.08	8.19	.1	5.7	24.7	.80	8	Ø	8	8	8	8	0
	AAP113883	25.8	1.14	8.52	.13	5.7	1.14	24.66	0	0	0	8	0	0	0
	6AP115203	25,18	1	8.44	,1	5.7	25.87	.69	0	0	8	0	8	8	0
	AAP119883	16.93	.81	6.32	.12	5.7	18.3	1.37	6	0	8	0	8	0	0
	AAP123003	21.24	.96	7.33	.11	5.7	22.94	1.7	0	8	0	0	0	0	0
	AAP25+671	42.6	-1.56	11.89	.13	5,7	45.01	2.41	0	0	8	8	8	Ø	0

CINETIQUE	SUR	S2	(Kérogène)
-----------	-----	----	------------

CINETIQUE SUR S2' (Résines & Asphaltènes)

	Code	Ea	n	Log A	e	d∏/m	Ea(T)	đE	Ea	n	Log A	e	₫7/m	Ea(T)	Œ
ΑΚΑ	AKA116203	0	8	8	0	8	8	0	43.91	.97	13.86	.35	8	48.99	5.88
	AKA116653	0	0	0	8	8	8	8	37.24	.89	12.03	.32	5.7	41.36	4.12
	AKA117153	8	0	0	8	8	0	8	39.84	.96	12.71	.24	5.7	39.42	.42
,	AKA118253	0	0	8	8	0	6	8	38.27	.83	12.51	.43	5.7	39.12	.85
	AKA118643	0	0	8	8	0	0	0	38.62	.91	12.45	.38	5.7	38.65	.83
	AKA119153	0	8	0	0	0	0 -	8	0	8	0	9	9	0	8
ALA	ALA127223	8	8	8	8	8	0	8	35.36	.78	11.74	.41	5.7	36.25	. 89
	ALA127333	6	8	8	8	8	8	8	33.02	.73	11.14	. 42	5.7	34.16	1.14
	ALA127363	0	8	9	8	0	9	0	33.16	.8	11.03	.54	5.7	34.27	1.11
	ALA129633	0	8	8	0	8	6	8	49.61	1.19	15.28	.28	0	52.28	2.67
	ALA131943	0	8	8	0	0	8	8	e	8	0	0	8	9	8
	ALA132003	0	0	8	0	8	8	8	8	8	0	0	0	8	8

ANNEXE V.1.5.

ANNEXE V.1.5. REPRISE DES PRINCIPALES DONNEES GEOCHIMIQUES ET CINETIQUES

		:	IND	ICES	:		Pyroly	sat du l	KEROGENE	(pic S2)		: 1	yrolysat	des RES +	AS (pic	52')	:
	Code	:	11	IM	:	Ін	10	TMax	E(Kcal)	n	E/n	: 1	H TMax	E(Kcal)		E/n	:
ΑΑΑ	AAA170803	:	2.5	1.5	:	377	32	425	61.48	1.6	38.43	: B2	2 410	41.2	.81	50.86	:
	AAA175003	:	2.4	1.7	:	426	29	427	54.82	1.45	37.81	: 0	430	38.31	.93	41.19	:
	AAA188703	:	0	0	:	8	8	0	0	8	0	: 0	Ø	0	8	6	:
	AAA189103	:	8	0	;	8	0	0	0	0	8	: 0	0	0	0	0	:
	AAA189263	:	0	Ø	:	0	0	0	0	0	8	: 0	e	6	6	8	:
	AAA190103	:	6	8	:	8	Ø	ø	0	e	0	: 0	0	0	8	8	:
	AAA198203	:	0	6	:	e	0	0	0	0	8	: 0	Ð	0	6	6	:
	AAA191163	:	0	0	:	0	8	0	8	6	0	: 0	0	0	8	8	1
	AAA199983	:	0	8	:	6	e	0	0	6	e	: 0	0	8	6	6	:
	AAA200113	:	0	8	:	8	0	0	75.27	1.64	45.9	: 0	Ø	0	8	0	:
	AAA202143	:	2.4	2.8	:	371	0	438	73.24	1.85	39.59	: 0	8	0	6	6	•
	AAA200153	:	2.6	2.1	+	269	166	431	45.23	1.43	32.33	: 0	0	0	8	8	:
	AAA200573	:	2	3	:	428	71	443	58.2	1.55	37.55	: 0	8	8	6	8	:
	AAA200632	:	1.1	2.6	:	756	34	445	61.2	1.22	50.16	: 0	U U	0	0	8	:
	AAA21010673	:	6	0	:	10	8	8	6	8		: 0	6	8	8	ĸ	1
	AAA200832	-	3	6	1	135	6	6	6	U D	r.	: 0	U D	6	N N	ĸ	:
	AAA201103	:	8	6	:	K	6	8	0	8	00 / 0		0	6	U D	ю О	:
	AAA201423	:	2.2	3.3	1	289	144	440	38.11	1./	21.42	: 0	6	6	ĸ	8	-
	AAA2101523	:	1.3	1./	•	/54	6	432	61.99	1.69	36.68	: 10	. KOD	N	8	8	:
	AAA201533	•	2.2	2.6	1	418	6	435	4/.48	1.5	36.02	: 39	5 420	46.44	1.15	40.03	•
	AAA201003	:	2.4	3	:	748	110	441	21.27	1.51	33.93		6	6	0	10	
	AAA201/33	-	2.4	2.7	•	322	6	438	0	8	8	: 6	6	8	6	6	÷
	AAA201823	:	6	6	1	6	6	437	0	6	0	: 10		0	U D	ε ο	:
	AAA201923	1	1	1.5	:	861	12	437	32.6/	1.23	92.82	: 70	1 10	6	8	8	•
	AAA202383	1	1	1.3	•	941	21	938	26.23	1.16	48.73	. 0	420 A	ic D	0	0	
	AAA202333		ъ	8.	;	070	2	10	6	0	0	. 0		8	0	0	
	AAA20/227	:	2.9	3.1	:	2112	ю р	443	ю 0	0	e o	• 10	0	10 0	0	ю а	:
	AAA204223		10 22	8 7 ^	•	ם רב ד	ю О	0	10 54 14	0	74 80	. 0	0	0	e a	0	
	AAA280333		2.2	3.2	:	337	8	444	34,14	1.3	70.07	• 10	10 475	10	107	10 A 7	:
	AAA207447	:	2.1	,2.7 D		430	17 a	441	03.03 0	1.05	37.44	• •	4 43J B	44.27	1.65	4.J A	:
	AAA2001473	:	a	a	;	a	0	U 475	0	0	D D	• 0	a	a	B	a	÷
	AAA702287	;	a	e A	;	e p	ю. О	a	0	0	a	. 0	ø	0	e e	a	÷
	AAA386123	-	a	a	÷	8	R R	a	8	a	e e	: 0	Å	Ø	8	ด้	
	AAA706713		11	7 1	;	516	66	452	54.08	1 58	34.23	: A	Ä	â	R	9	
	AAA386483	:	1.1	3.3	÷	454	37	451	63.52	1.85	34.15	: P		Ä	ē	8	
	AAA386763	:	0	6	:	0	0	0	8	0	0	: 0	0	8	0	0	:
AAG	AAG200543	:	2.6	2.3	:	271	28	433	42.29	1.15	36.77	: e	8	0	0	8	:
	AA6202103	:	2.4	2.8	:	322	43	439	44.85	.92	47.89	: 0	0	46.1	. 88	52.39	:
	AAG202413	:	2.2	2.8	:	375	42	439	33.5	.84	39.88	: 0	e	0	0	6	:
	AAG202913	:	2.5	1.3	:	388	9	420	0	8	0	: 0	8	0	8	8	:
	AAG203133	:	2.4	2.8	:	308	58	439	48.75	.9	45.28	: 6	0	31.33	.46	68.11	:
	AAG217843	:	2.4	2.8	:	365	56	439	44.65	1.11	40.23	: 0	0	0	0	8	:
	AA6223443	:	2.2	3	:	323	66	442	44.65	1.56	28.62	: 6	6	6	e	6	:
	AA6223/23	:	2.5	2.3	:	323	31	433	35.22	.77	45.74	: 0	467	0	6	8	:
	AAG224123	:	1.1	1.7	:	819	38	437	49.92	1.36	36.71	: 0	8	8	0	8	:
	AA6224653	:	2	2.9	1	461	35	443	43.23	1.69	39.60	: 9	ĸ	42.3	1.1	38.45	:
	AA6225123	:	1.9	2.1	:	532	25	446	44,65	1.1	40.34	. 0	0	8	6	e a	:
	AAC20207077	:	4	3	•	41 700	28 17	437	50.44	1.7	27.26	4 U	0	0 50 0/	10 10/1	10 DC 75	
	AAC007017	:	1.3	2.6	:	1210	10	44) 1/5	57.64	1.35	44.18		926	D0.26	.00	07./D	:
	AA6227213	:	1	2.6	:	782 DC	18	440	J∠.68	1.16	44.7	: 10	431	DØ. /9	. 54	13.01	:
	AAC020502		1	1.0	•	57C 70	27	441	00.8	1.30	44./1		iC D	ю 9	10 0	0	
	AACYTYTET	•	1.3	1.0		700 715	27	438	4/.20	1.1/	70.37	• 10 • n	ט יר.	U A	ю А	C Q	÷
	84602027J3	:	1.3	1.7		763 764	د ير م	430	34.3/ 47 7/	1.41	30.30	• 0 • 0	436	10 51:00	10 07	61 D	:
	VU0731312	;	1.3	1.7	:	757	71	431	56 00	1.22	70.07 20.0	• 0	400 a		.do A	Ø.0	
		•		4.7	•	122	51	-6-	27.00	1.0-	70.10	· •	Ð	E.	•	•	•
												-					

LEGENDE DE L'ANNEXE V.1.5 - Principales données de pyrolyse comparative et paramètres cinétiques pour la caractérisation du kérogène et des résines & asphaltènes. *II*: Indice de Type, *IN*: Indice de Maturité, *IH*: Indice d'Hydrogène (mg HC/g Corg.), *IO*: (mg CO₂/g Corg.), *INax*: Température TMax du pic S2 des roches à kérogène ou du pic S2' des résines & asphaltènes. Paramètres cinétiques *E*: Energie d'activation (Kcal/mole), *n*: Ordre de réaction et rapport *E/n*.

		:	IND	ICES	:		Pyroly	sat du l	KEROGENE	(pic 52)		:	Pyr	olysat	des RES +	AS (PIC	52°)	:
	Code	:	IT	IM 	:	IH =======	10	TMax	E(Kcal)	n ==== 2==== =	£/n	:	IH	TMax	E(Kcal)	n =========	E/n	: =
AE	AAE060001	:	2.4	.4	:	523	31	393	16.99	1.02	16.66	:	677	431	8	0	0	:
	AAE06400:	:	2.4	1.3	:	449	53	419	22.12	1.2	18.43	:	0	0	0	0	B	:
	AAE068001	:	2.2	.7	:	543	33	408	22,52	1.36	16.56	:	787	411	8	U A	0	:
	AAE072001	;	1.9	•7	:	507 634	35	410	20,48	1.07	29.77	÷	002 R	ю 0	Ø	0	e P	:
	AAE080001	:	1.6	.5	:	769	31	408	24.8ó	1.3	19.12	:	ø	õ	. 0	8	8	:
	AAE084001	:	2	.7	:	623	33	407	24.39	1.34	18.2	:	0	0	8	Ø	e	:
	AAE088801	:	2.2	1.1	:	519	57	414	18.27	.B2	22.28	:	0	0	8	0	0	:
	AAE100001	:	2	1.1	:	685	34 25	416	28.87	1.29	22.38	:	447	411	0	8	6	:
•	AAF104001		2.1	1.1	:	526 571	23	413	29.37	1.15	22 53	:	80 609	404 404	ю Ю	8 9	Ø	•
	AAE112001	:	2.2	1.1	:	520	33	415	19.41	.92	21.1	:	0	0	ø	ē	9	:
	AAE116001	:	2.5	.7	:	413	35	407	22.43	1.11	20.21	:	0	0	8	0	0	:
	AAE124001	:	2.7	2.1	:	188	132	431	31.23	1.14	27.39	:	8	0	8	8	e	:
	AAE128001 AAE132001	1	2.8	2.1	:	176	137	431 472	31.43 29.97	.98 88	32.07	:	Ø	6 A	8	0 0	6	:
	AAE136001	;	2.8	2.6	:	133	144	432	38.31	1.21	31.66	÷	8	0	6	ē	6	:
	AAE140001	:	2.7	2.6	:	167	111	433	28.82	1.03	27.98	:	Ø	6	ē	0	0	:
	AAE144081	:	2.9	2.6	:	125	0	433	0	0	8	:	0	0	8	e	e	:
	AAE148101	:	3	2.6	:	96 74	65 40	438	-0	6	6	:	0	0	0	0	8	:
	AAF156801	÷	ວ ຄ	A . 1	:	70 29	₩0 β	425 425	ю Ю	N PA	ю А	÷	R	ю р	е 9	ю Ю	C A	:
	AAE160001	:	0	8	:	58	0	416	8	6	e	;	0	0	e	e	e	:
	AAE164001	:	3	2.1	:	74	8	426	6	0	8	:	0	8	8	8	0	:
	AAE168001	:	3	2.3	:	62	8	427	0	0	6	:	6	8	0	8	0	:
	AAE172301	:	3	1.5	:	93	ië A	419	8	6	10 A	:	8	8	8	19 0	8	:
	AAE180201	;	3	2.9	:	60	8	436	8	8	8	:	10	0	8	8	ß	;
	AAE1B4001	:	6	0	:	6	6	R	8	0	0	:	e	e	0	ø	8	:
	AAE190301	:	6	₿	:	77	0	416	0	0	0	:	103	436	0	8	0	:
	AAE192073	:	2.9	.9	:	159	6	487	0	0	e	:	0	0	6	0	8	:
	AAE192283	:	2.8	1.5	:	198	27	422	JJ.85	1.1/	28.93	:	149	10 14 74	40.02	1.09	36.72	:
	AAE193173	:	8	R	•	0	8	720	43.35	8	23.43	:	917	441	38.4	.73	52.6	:
	AAE193793	;	e	e	:	e	0	e	0	8	ē	:	187	416	Ø	8	6	:
	AAE194293	:	2.8	.3	:	263	0	ß	0	0	0	:	399	436	33.34	.75	44.45	:
	AAE195153	:	6	0	:	6	6	e	Ø	0	8	:	8	Ø	0	0	6	:
	AAE196773	:	2.4	ю Ю	:	234	60 22	6	8	8	8	:	8	0	18. D	e A	9 8	:
	AAE 198601	÷	3	2.1	:	213 74	6	42ó	8	ß	e A	:	R	8	ß	8	ю И	;
	AAE 200001	:	0	0	:	17	ē	429	ē	ē	0	:	6	0	0	8	e	:
	AAE200821	:	0	8	:	79	8	431	8	0	0	:	511	426	0	0	0	:
	AAE201401	:	0	0	:	65	0	430	0	0	6	:	502	436	0	0	6	:
	AAE201801 AAE202223	:	2.1	2.6	:	40 461	0 8	ю 475	e a	6 6	ю R	-	ש דר כ	10 474	10 49 101	1.07	10 45 8	:
	AAE202573	÷	2.8	0 :	:	317	8	0	0	8	8	:	0	8	0	0	8	
	AAE202593	:	2.6	1.5	:	368	25	425	41.9	1.22	34.34	:	1008	486	38,83	.76	48.57	:
	AAE203013	:	2.4	1.9	:	438	19	429	64.21	1.53	41.97	:	874	421	8	0	e	:
	AAE203303	:	2.8	R .	:	315	8	6	6	8	6	:	183	426	0	0	6	:
	AAE203713	÷	2.4	2.3	•	427	19	433	0 57.82	e 1.65	0 34.83	÷	8	ю Р	48.8	بة 99	6 49.29	:
	AAEL26722	:	2.5	3	:	198	12	441	43.42	.88	49.34	:	0	ē	54.61	1.21	45.13	:
	AAE205733	:	3	3	:	89	8	438	59.89	1.24	48.3	:	8	0	e	0	8	:
	AAE20850)	:	8	8 : 20	:	39	8	43:	8	8	0	:	8	8	8	0	8	:
	AAE210601	:	3.5	2.4 3.2	í !	345 345	e A	نۍو دغغ	r A	r A	ю р	۲ :	2107 740	421 444	10 45 01	1 21	ני גר קר	•
	AAE267663	:	2.7	1.9	:	241	18	429	40.23	1.86	21.63	:	6	 0	2.21	8	8	:
	A4E267993	:	2.6	2.8	:	173	16	438	38.12	1.61	23.68	:	0	8	8	0	e	:
	AAE268173	:	2.7	1.3	:	245	0	421	6	6	8	:	0	8	8	0	0	:
	AAE271201	:	8	P. :	:	32	8	8	8	8	0	:	8	0	6	8	6	:
	AAE271401	-	ю р	10 R :	:	16 R	r A	44) 0	ю я	с a	9 9		ю А	6 0	12 0	li A	e P	
	AAE272001	:	ē	8	:	8	8	0	0	e	8	÷	ē	ē	6	ø	e	:
	AAE272401	:	1.7	2.8	:	544	82	442	49.73	1.02	48.75	:	0	0	6	6	8	:
	AAE273001	:	1.3	2.6	:	785	16	441	46.17	.92	50.18	:	0	0	49.54	1.05	47.18	:
	AAE273601	:	1.3	2.6	:	7210	114	44] ARC	44.2	.97	45.57	:	6	0	0	6	0	:
	AAE:74401	:	1.4	2.6 :	•	601 595	13	439	47.40	.97	47.14	4 1	e A	ю р	r R	ю А	r A	: :
	AAE275201	:	1.4	2.6	:	665	14	439	51.28	1.06	48.38	:	ē	8	8	6	6	:
	AAE275801	:	1.1	2.1	:	782	15	448	44.18	, 95	46.51	:	0	456	6	0	8	:
	AA5276201	:	1.1	1.9	:	797	15	439	49.94	1.24	48.02	:	6	456	6	e	6	:
	AAL2/6601	:	1	2.1	:	5602 777	14	442	48.87 50 01	, 98	49.87	:	R R	6	58.25	,75 5/	77.57	:
	AAE277401	:	1.1	2.3	:	733 775	12	443	58.37	.77 1	50.32	:	0 0	441 P	24./1 g	.54 R	p P	:
	AAE277881	:	1.1	2.3	:	763	15	441	46.57	1	46.57	;	0	ē	8	ē	e	:
	A4E278901	;	1.3	2.6	:	691	ç	43C	58,11	1.13	51.42	:	8	0	53.55	.00	77.01	:

Α

ANNEXE '	٧.	1.	5.
----------	----	----	----

		:	IND	I CE 5	:		Pyroly	sat du	KEROGENE (pic S2)		:	Pyr	olysat	des RES +	AS (pic	\$2')
	Code	:	11	IH	:	IH	10	TMax	E(Kcal)	ħ	E/n	:	IH	TMax	E(Kcal)	n	E/n
٨٨٢	AAF312603	:	2	2.6	:	528	19	433	61.53	1.46	42.14	:	0	420	53.87	1.15	46.84
AVI	AAF312743		1.1	2.3	:	762	24	442	50.08	1	50.08	:	1031	416	43.11	.9	47.9
	AAF312803	:	1.4	2.6	:	655	23	442	66.02	1.28	51.58	:	0	460	0	8	9
	AAF312863	:	1.1	2.6	:	715	21	445	53.85	1.2	44.88	:	0	436	0	8	8
	AAF313053	:	2.1	2.3	:	472	78	432	0	0	0	:	459	410	53.11	1.69	31.43
	AAF313223	:	1.1	2.6	£	767	13	443	64.78	1.38	45,94	:	917	441	0	0	0
	AAF313473	:	2.1	2.3	:	479	19	432	65.81	1.58	41.65	:	449	421	8	0	Ø
AAO	AA0340556	:	2.2	3.1	:	314	80	443	35.62	.85	41.91	:	842	431	47.28	1.05	45.03
	AA0341006	:	1.1	2.6	:	723	15	445	8	8	8	:	0	8	8	8	8
	AA0345006	:	2.4	3	:	267	0	442	45.98	1.44	31.93	:	980	431	44.77	1.14	39.27
	AA0345186	:	2.5	2.8	:	251	223	439	39.12	1.48	26.43	:	556	421	52.9	1.37	38.61
	AA0346106	:	2.4	3	:	274	120	441	46.39	1.69	27.45	:	870	426	0	9	0
	AA0346305	:	1	2.7	:	709	13	451	65.62	1.2	54.68	:	6	Ø	0	8	0
	AA0348206	:	1.3	2.8	:	620	51	450	59.2	1.03	57.48	:	831	456	0	0	0
	AA0348506	:	1	3.3	:	446	37	452	58.87	1.29	45.64	:	747	4 5 i	36.62	.89	41.15
	AA0351556	:	2	3.3	:	337	22	447	45.01	1.19	37.82	:	759	446	40.78	1.08	37.76
	AA0351906	:	1.3	3.2	:	473	9	449	64.41	1.54	41.82	:	613	446	8	8	0
	AA0353306	:	2.4	2.7	:	333	47	438	39.44	1.01	39.05	:	776	441	39.98	.97	41.22
	AA0353586	:	1.4	3.3	:	415	64	448	44.6	1.08	41.3	:	772	441	48.92	1.02	47.96
	AA0353756	:	2	2.8	:	466	31	440	55.25	1.34	41.23	:	862	451	45.54	.7	65.06
	AA0355806	:	2	3.2	:	395	59	445	52.67	1.37	38.45	:	8 86	446	40.65	.93	43.71
	AA0356006	:	1.9	3.2	:	428	14	447	56.64	1.45	39.06	:	1008	441	42.15	.94	44.84
	AA0356186	:	1.3	3.1	:	496	14	450	59.02	1.3	45.4	:	886	436	49.94	.94	53.13
	AA0356306	:	2	2.6	:	501	16 `	435	42.87	1.11	36.82	:	986	0	0	8	0
	AA0356486	:	2.1	3.2	:	348	1é	445	50.59	1.14	44.38	ť	665	441	47.9	1.15	42.25
	AA0358106	1	2.4	3.1	:	233	135	443	44.72	1.17	38.22	:	655	431	37.79	1	37.79
AAP	AAP059203	:	2.4	.5	:	482	40	402	28.37	1.22	15.7	:	245	6	e	0	0
	AAP063003	:	2.3	.7	:	519	39	405	22.53	1.2	18.77	:	9	Ø	32.68	.96	34.04
	AAP867201	:	2.1	.5	:	586	27	481	24.58	1.21	20.31	:	6	9	Ø	e	0
	AAP075003	:	2	.5	:	659	34	403	25.01	1.18	21.19	:	784	6	6	6	0
	AAP078603	:	2.2	.4	:	578	33 .	393	20.33	.96	21.18	:	6	0	6	6	8
	AAP283883	:	2.3	.3	:	556	35	386	27.42	1.92	14.28	:	8	0	0	0	0
	AAP085003	:	2.6	.3	:	377	41	389	27.59	1.79	15.41	:	0	0	41.1	2.14	19.21
	AAP087003	•	2.5	.3	:	410	36	389	32.1	2.11	14.27	:	0	416	6	8	8
	AAP087011	:	2.2	.5	:	573	34	401	17.92	.92	17,48	:	6	8	9	6	0
	AAP091003	:	1.9	.9	:	660	43	412	22.23	.89	24.98	:	8	401	9	8	0
	AAP@95403	:	1.7	.9	:	689	33	412	25.02	1.2	28.85	:	0	8	6	6	e
	AAP898603	:	2	.9	:	618	40	411	25.76	1.15	22.4	:	0	421	0	8	0
	AAP183803	:	1.9	.9	:	649	42	411	24.18	1.84	23.25	;	925	416	8	8	Ø
	AAP104603	:	2	.9	:	631	41	411	24.9	1.03	24.17	:	1858	486	0	0	8
	AAP111003	:	2	.9	:	610	35	412	24.76	1.28	22.93	:	658	416	8	8	6
	AAP113803	:	2.3	.5	:	539	43	400	25.8	1.14	22.63	:	764	431	8	0	0
	AAP115283	:	2.4	1.1	;	479	50	414	25.18	1	25.18	:	852	4866	0	8	Ð
	AAP119023	:	2	1.1	:	605	53	415	16.93	.81	20.9	:	368	0	0	8	8
	AAP123083	:	2.3	1.1	:	582	46	413	21.24	.96	22.13	:	Ø	e	6	6	0
	AAP254671	;	1	3.7	:	334	319	451	42.6	1.56	27.31	:	975	4 4 j	0	0	B

		:	IN	DICES	:		Руго	lysat du	KEROGENE	(pic S2)		:	Pyr	olysat	des RES +	AS (pic	(S2')	:
	Code	:	IT	١٣	:	IH	10	TMax	E(Kcal)	n	E/n	:	IH	TMax	E(Kcal)	ħ	E/n	:
ΔΚΔ	AKA116007		a a	====== 0	.===	.=====: p		22222222 Q		a .	0		1071		22222222222 10 74	07	45 27	==
ANA	AKA116453	-	a	e o	;	p	ø	p	0	0	p	-	705	430	73,71	 oc	41 R4	÷
	AKA117153	÷	R	R		A	8	Â	e e	ē	R	;	878	471	10 84	94	A1 5	;
	AKA118253		ē	Â	÷	Ā	Å	R	P	a	e	-	828	431	38.27	.83	46.11	÷
	AKA118643		ē	õ	;	ø	B	8	8	8	8		973	8	38.62	.91	42.44	:
	AKA119153	:	8	8	:	e	ē	ē	ē	8	6	:	Ø	ē	8	8	0	:
ALA	ALA127223	:	ę.	. 0	:	8	8	ē	8	8	0	:	615	431	35.36	.78	45.33	:
	ALA127333	:	0	e	:	0	6	8	8	0	0	:	701	431	33.02	.73	45.23	:
	ALA127363	:	8	0	:	8	8	e	0	8	0	:	684	431	33.16	.8	41.45	:
	ALA129633	:	9	ø	:	e	ø	6	8	6	8	:	642	431	49.61	1.19	41.69	:
	ALA131943	:	0	0	:	8	e	P.	6	8	8	:	0	0	0	0	8	:
	ALA132083	:	e	8	:	0	0	6	0	8	0	;	8	0	8	8	6	:

- 82 -

ANNEXE V.2. LOGS DES PRINCIPALES DONNEES GEOCHIMIQUES DU BAS ZAIRE - ANGOLA

LEGENDE DE l'ANNEXE V.2.1 - Logs géochimiques des échantillons du Bas Zaïre - Angola. *II*: Indice de Type et *IN*: Indice de Maturité.

ANNEXE V.2.1.

ANNEXE V.2.2.

ANNEXE V.2.2. LOGS GEOCHIMIQUES DES INDICES IPE, IKB ET IMA

LEGENDE DE L'ANNEXE V.2.2 - Logs géochimiques des échantillons du Bas Za∎re - Angola. *IPE*: Indice de Production Estimée, *IKB*: Proportion de bitume en place, *IMA*: Indice de Migration (valeurs négatives: expulsion et valeurs positives: accumulation, valeurs faibles ou nulles: le bitume produit est resté en place).

ANNEXE V.2.3. LOGS GEOCHIMIQUES DES POTENTIELS PETROLIERS

LEGENDE DE L'ANNEXE V.2.3 - Logs géochimiques des échantillons du Bas Zaïre - Angola. *S2*: potentiel pétrolier (mg HC/g roche). *S2 Résiduel*: S2_{res}, *S2 Produit*: S2_{pr} et *S2 Migré*: S2_{exp} (valeurs négatives) et S2_{ecc} (valeurs positives).

ANNEXE V.2.3.

- 88 - ·

ANNEXE V.3.1.

ANNEXE V.3. TABLEAUX DE SYNTHESE DES DONNEES GEOCHIMIQUES DU BAS ZAIRE - ANGOLA

FORMATIONS	AGE	LITHOLOGIE DOMINANTE	SONDAGE (code)	PROFONDEUR (m)	EPAISSEUR (m)	NOMBRE d'éch.	DENSITE Moyenne
<u>IABE</u> Tertiaire-	Eocène- Paléocène-	Argilites et	AAP Aap	592- 890 890-1234	298 344	9 10	2.65 2.65
Crétacé (Black Shales)	Sénonien	Marnes silteuses	AAE AAE	558- 770 770-1190	212 420	5 8	2.65 2.65
<u>LIAWENDA</u>	Turonien	Sables	AAE	1190-1311	121	2	2.65
<u>KINKASI</u>	Cénomanien	Marnes et Calcaires Calcaires et Dolomies Silts	AAE Aka Ala	1311-1876 1097-1267 1198-1386	565 170 188	14 6 6	2.70 2.75 2.65
<u>VERHELHA</u>	Albien	Argilites et Dolomies	AAE	1876-2064	188	22	2.65
MAVUNA	Aptien sup.	Dolomies	AAE	2064-2115	51	4	2.80
LOEME	Aptien	Sel	AAE	2115-2660	545	0	2.20
<u>CHELA</u>	Aptien inf.	Argilites, Dolomies et grès	AAE	2660-2704	44	4	2.70
<u>BUCOMAZI</u> faciès <u>TOCA</u>	Barrémien- Néocomien	Carbonates Grès carbonatés	AAE AAA	2704-2722 1878-1896	18 18	4 3	2.75 2.70
<u>BUCOMAZI</u> faciês <u>ORGANIC ZONE</u>	Barrémien- Néocomien	Argilites noires, bitumineuses à inter- calations de grès	AAE AAF AAO	2722-2789 2813-3252 3205-3576	67 439 371	13 7 19	2.65 2.65 2.65
<u>BUCOMAZI</u> faciès	Barrémien-	Grès et Sables à Argilites	AAG AAG AAG	1870-2040 2150-2268 2268-2344	170 118 76	5 7 7	2.65 2.65 2.65
<u>GRESEUX</u>	Néocomien	Grès, Argilites et Carbonates	AAA AAA A AA	1896-2075 2840-2946 3020-3092	179 106 72	22 5 5	2.65 2.65 2.65

ANNEXE V.3.1. CARACTERISTIQUES GENERALES DES FORMATIONS

ANNEXE V.3.2. INDICES PETROLIERS DE PYROLYSE COMPARATIVE

					IND	ICES M	OYENS	
FORMATIONS	SONDAGE (code)	PROFONDEUR (m)	COT (%)	IT _m s(IT _m) Type	IM _m Maturité	IPE _m Prod. Est.	IAH _m (HC/Bitume)	IQH _m (HC légers/HC)
IABE	AAP AAP	592- 890 890-1234	5.35 7.01	2.29 ± 0.19 2.05 ± 0.22	0.44 0.92	0 0.12	0.53 0.30	0.52 0.49
lertiaire- Crétacé (Black Shales)	AAE AAE	558- 770 770-1190	3.26 3.26	2.20 ± 0.21 2.09 ± 0.24	0.88 0.93	0.06 0.07	0.42 0.38	0.47 0.44
<u>LIAWENDA</u>	AAE	1190-1311	0.86	2.75 ± 0.07	2.10	0.32	0.19	0.50
<u>KINKASI</u>	AAE Aka Ala	1311-1876 1097-1267 1198-1386	0.46 0.11 0.06	2.92 ± 0.11	2.18	0.21 0 0	0.30 0.79 0.81	0.71 0.88 0.82
<u>VERMELHA</u>	AAE	1876-2064	1.38	2.67 ± 0.25	1.62	0.06	0.76	0.81
MAVUNA	AAE	2064-2115	0.42	3.00 ± 0.50	2.97	0.30	0.75	0.77
<u>CHELA</u>	AAE	2660-2704	0.76	2.53 ± 0.29	2.30	0.36	0.41	0.65
<u>BUCOMAZI</u> faciès <u>TOCA</u>	AAE AAA	2704-2722 1878-1896	0.17 0.01			0 0		
<u>BUCOMAZI</u> faciès <u>ORGANIC ZONE</u>	AAE AAF AAO	2722-2789 2813-3252 3205-3576	9.93 5.31 3.23	1.28 ± 0.23 1.56 ± 0.49 1.79 ± 0.52	2.44 2.47 2.99	0.36 0.33 0.57	0.51 0.61 0.63	0.90 0.79 0.81
<u>BUCOMAZI</u> faciàs	AAG AAG AAG	1870-2040 2150-2268 2268-2344	1.09 2.24 4.55	2.42 ± 2.15 2.30 ± 0.88 1.21 ± 0.15	2.40 2.63 2.14	0.29 0.41 0.28	0.37 0.21 0.31	0.60 0.55 0.69
GRESEUX	AAA AAA AAA	1896-2075 2840-2946 3020-3092	1.38 0.88 1.29	2.00 ± 0.67 2.15 ± 0.07 1.10 ± 0	2.48 3.05 3.20	0.20 0.17 0.26	0.59 0.47	0.83 0.84

LEGENDE DE L'ANNEXE V.3.2 - Valeurs moyennes des teneurs en Carbone Organique Total COT et des principaux indices géochimiques, pour les différentes formations du Bas Zaïre - Angola. Le type de kérogène est caractérisé par l'Indice moyen de Type IT, et par l'écart type s(IT,). Indices IM,: maturité du kérogène, IPE,: production estimée, IAH,: proportion d'hydrocarbures dans l'ensemble du bitume (S1+S1')/(S1+S1'+S2') et IQH,: proportion d'hydrocarbures légers (C1-25) dans l'ensemble des hydrocarbures S1/(S1+S1').

ANNEXE V.3.3.

			POTEI	NTIEL PETROL	IER	TEI	VEUR en BI	TUME	BITUME MIG	RE (bilan)
FORMATIONS	SONDAGE (code)	PROFONDEUR (m)	Initial (S2 _e)	Résiduel (S2 _{rés})	Produit (S2 _{Pr})	En Place	Expulsé (total)	Accumulé (total)	Migré (S2 _{exp})	Migré (S2 _{acc})
	440	E02 000	20 50		0 10	A 1A		4 04		L A 04
TARF	AAP	592- 690 890-1234	29.50 49.44	29.39 42.73	0.10 6.71	4.14	0 3.82	4.04	- 2.92	▼ 4 ,04
Tertiaire-							••••			
Crétacé	AAE	558-770	20.61	18.75	1.86	1.49	1.09	0.72	- 0.37	
(Black Shales)	AAE	770-1190	20.71	19.19	1.52	1.68	0.50	0.66		+ 0.16
<u>L I AWENDA</u>	AAE	1190-1311	2.32	1.58	0.75	0.23	0.52	0	- 0.52	
	۵۵F	1311-1876	<u></u> Ω 66	Ω <i>4</i> 7	n 10	0 10	0 10	0.02	- 0.09	
KINKASI	AKA	1097-1267	0.17	0.17	0	12.99	0	12.99		+ 12,99
	ALA	1198-1386	0.03	0.03	0	9.53	0	9.53		+ 9.53
	A A T	1076 2064	<u> </u>	4 60	0.07	6 5 6	0	E (0		. 5 60
VEKALLAA	AAC	18/0-2004	5.4/	4.00	0.87	0.30	U	2.09		+ 3.09
<u>MAVUNA</u>	AAE	2064-2115	0.90	0.45	0.45	1.43	0	0.98		+ 0.98
<u>CHELA</u>	AAE	2660-2704	2.83	1.73	1.10	1.11	0.64	0.65		+ 0.01
BUCONAZI	AAE	2704-2722	0.06	0.06	0	0.06	0	0.06		+ 0.06
faciès <u>TOCA</u>	AAA	1878-1896	0.05	0.05	0	0.01	0	0.01		+ 0.01
BUCOMAZI	AAE	2722-2789	110.82	69.00	41.82	10.49	31.32	0	- 31.32	
faciès	AAF	2813-3252	56.57	36.21	20.36	12.25	12.64	4.52	- 8.11	
ORGANIC ZONE	AAO	3205-3576	41.64	13.28	23.36	14.73	14.58	3.95	- 10.63	
	AAG	1870-2040	4.84	3.27	1.56	0.52	1.16	0,12	- 1.05	
BUCOHAZI	AAG	2150-2268	20.42	12.49	7.93	1.65	6.38	0.10	- 6.28	
	AAG	2268-2344	72.87	49.82	23.05	7.22	15.83	0	- 15.83	
faciès										:
	AAA	1896-2075	14.62	11.01	3.62	1.08	2.59	0.06	- 2.53	
GRESEUX	AAA	2840-2946	5.54	3.09	2.45	1.12	1.41	0.08	- 1.34	
	AAA	3020-3092	18.12	6.16	11.96	0.01	11.96	0.01	- 11.95	

ANNEXE V.3.3. POTENTIELS PETROLIERS et TENEURS EN BITUME (kg HC/Tonne de Roche)

LEGENDE DE L'ANNEXE V.3.3 - Valeurs moyennes des potentiels pétroliers et des teneurs en bitume pour les différentes formations du secteur Bas Zaïre - Angola (K/T roche). *Potentiels pétroliers initiaux* (calculé), *résiduels* (mesuré) et *produits* (différence entre les deux premiers). Teneurs en *bitume en place* (mesuré par pyrolyse comparative), teneurs en *bitume expulsé* (ensemble des échantillons dont l'indice IMA est négatif), teneurs en *bitume accumulé* (ensemble des échantillons dont l'indice IMA est négatif). Bilan net du *bitume migré*, pour l'ensemble des formations (valeurs négatives: expulsion S2_{exp}) et valeurs positives: accumulation S2_{exp}).

FORMATIONS	SUNDACE		POTI Initial	ENTIEL PETRO	<u>DLIER</u> Produit	<u>Il</u> En	ENEUR en B	ITUME Accumulá	<u>BITUME MIGRE (bilan)</u> Mioré Nigré		
	(code)	(m)	(\$2,)	(S2 _{•×P})	(\$2 _{Pr})	Place	(total)	(total)	(S2 _{exp})	(S2 _{acc})	
<u>IABE</u> Tertiaire-	AAP Aap	592- 890 890-1234	23.29 45.07	23.21 38.95	0.08 6.12	3.27 3.46	0 3.48	3.19 0.81	- 2.67	+ 3.19	
Crétacé (Black Shales)	AAE Aae	558- 770 770-1190	11.58 23.36	10.54 21.65	1.04 1.71	0.84 1.89	0.61 0.56	0.41 0.74	- 0.20	+ 0.18	
<u>LIAWENDA</u>	AAE	1190-1311	0.75	0.50	0.24	0.07	0.17	0	- 0.17		
<u>KINKASI</u>	AAE Aka Ala	1311-1876 1097-1267- 1198-1386	1.00 0.08 0.01	0.71 0.08 0.01	0.29 0 0	0.15 6.07 4.75	0.16 0 0	0.03 6.07 4.75	- 0.14	+ 6.07 + 4.75	
<u>VERMELHA</u>	AAE	1876-2064	2.83	2.38	0.45	3.39	0	2.94		+ 2.94	
MAVUMA	AAE	2064-2115	0.129	0.065	0.064	0.204	0	0.140		+ 0.140	
<u>CHELA</u>	AAE	2660-2704	0.336	0.206	0.130	0.131	0.076	0.077		+ 0.001	
<u>BUCONAZI</u> faciès <u>TOCA</u>	AAE AAA	2704-2722 1878-1896	0.003 0.002	0.003 0.002	0 0	0.003 0.001	0 0	0.003 0.001		+ 0.003 + 0.001	
<u>BUCOMAZI</u> faciès <u>ORGANIC ZONE</u>	AAE Aaf Aao	2722-2789 2813-3252 3205-3576	19.68 65.81 40.94	12.25 42.12 16.01	7.42 23.69 24.93	1.86 14.25 14.49	5.56 14.70 14.34	0 5.26 3.90	- 5.56 - 9.44 - 10.45		
<u>BUCOMAZI</u>	AAG AAG AAG	1870-2040 2150-2268 2268-2344	2.18 6.38 14.68	1.47 3.91 10.03	0.70 2.48 4.64	0.23 0.52 1.45	0.51 2.01 3.19	0.04 0.04 0	- 0.47 - 1.96 - 3.19		
GRESEUX	AAA AAA AAA	1896-2075 2840-2946 3020-3092	7.07 1.56 3.46	5.32 0.87 1.17	1.75 0.69 2.28	0.52 0.31 0.002	1.25 0.39 2.283	0.02 0.03 0.002	- 1.22 - 0.38 - 2.282		

ANNEXE V.3.4. POTENTIELS PETROLIERS ET TENEURS EN BITUME (10°T/km²)

LEGENDE DE L'ANNEXE V.3.4 - Valeurs moyennes des potentiels pétroliers et des teneurs en bitume pour les différentes formations du secteur Bas Zaïre - Angola (10°T/Km²). Potentiels pétroliers initiaux (calculés), résiduels (mesurés) et produits (différence entre les deux premiers). Teneurs en bitume en place (mesurées par pyrolyse comparative), teneurs en bitume expulsé (ensemble des échantillons dont l'indice IMA est négatif), teneurs en bitume accumulé (ensemble des échantillons dont l'indice IMA est négatif). Bilan net du bitume migré, pour l'ensemble de la formation (valeurs négatives: expulsion S2_{exp}) et valeurs positives: accumulation S2_{exp}).

FORMATIONS	SONDAGE (code)	PROFONDEUR (m)	BITUME PRODUIT (S2 _{Pr})	Teneur	BITUME EN PL Accumulé (total)	<u>ACE</u> Non mobilisé	Total	BITUME EXPUL Transfert interne	<u>.SE</u> Bilan (S2 _{•×P})	ACCUMULE Bilan (S2_cc)
<u>IABE</u> Tertiaire-	AAP Aap	592- 890 890-1234	0.08 <u>6.12</u> 5.20	3.27 <u>3.45</u> 6.72	3.19 <u>0.81</u> 4.00	0.08 <u>2.64</u> 2.72	0 <u>3.48</u> 3.48	0 <u>0.81</u> 3.48	0 <u>2.67</u>	3.19 <u>0</u> ' 0.53
Crétacé (Black Shales)	AAE AAE	558- 770 770-1190	1.04 <u>1.71</u> 2.75	0.84 <u>1.89</u> 2.73	0.41 <u>0.74</u> 1.53	0.43 <u>1.15</u> 1.58	0.61 <u>0.56</u> 1.17	0.41 <u>0.56</u> 1.15	0.20 0 0.02	0 <u>0.18</u> 0
<u>LIAWENDA</u>	AAE	1190-1311	0.24	0.07	0	0.07	0.17	0	0.17	0
<u>KINKASI</u>	AAE Aka Ala	1311-1876 1097-1267 1198-1386	0.29 0 0	0.16 6.07 4.75	0.032 6.07 4.75	0.13 0 0	0.16 0 0	0.02 0 0	0.14 0 0	0 6.07 4.75
<u>VERMELHA</u>	AAE	1876-2064	0.45	3.39	2.94	0.45	0	0	0	2.94
MAYUNA	AAE	2064-2115	.0.064	0.204	0.140	0.064	0	0	0	0.140
<u>CHELA</u>	AAE	2660-2704	0.130	0.131	0.077	0.054	0.076	0.077	0	0,001
<u>BUCOMAZI</u> faciès <u>TOCA</u>	AAE AAA	2704-2722 1878-1896	0 0	0.003 0.001	0.003 0.001	0 0	0 0	0 0	0 0	0.003 0.001
<u>BUCOMAZI</u> faciès <u>ORGANIC ZONE</u>	AAE AAF AAO	2722-2789 2813-3252 3205-3576	7.42 23.69 24.93	1.86 14.25 14.49	0 5.26 3.90	1.86 8.99 10.59	5.56 14.70 14.34	0 5.26 3.90	5.56 9.44 10.44	0 0
<u>BUCOMAZI</u> faciès	AAG AAG AAG	1870-2040 2150-2268 2268-2344	0.70 2.48 4.64	0.23 0.52 1.45	0.04 0.04 0	0.19 0.48 1.45	0.51 2.00 3.19	0.04 0.04 0	0.47 1.96 3.19	0 0 0
<u>GRESEUX</u>	AAA AAA AAA	1896-2075 2840-2946 3020-3092	1.75 0.69 2.283	0.52 0.31 0.002	0.02 0.03 0.002	0.50 0.28 0	1.25 0.39 2.283	0.02 0.01 0.002	1.23 0.38 2.281	0 0 0

ANNEXE V.3.5. DETAIL DES TENEURS EN BITUME (10°T/Km²), pour l'étude des migrations

LEGENDE DE L'ANNEXE V.3.5 - Valeurs moyennes détaillées des teneurs en bitume pour les différentes formations du secteur Bas Zaïre - Angola (10°T/Km²).

BITUME EN PLACE

- *Teneurs* en bitume, mesurées par pyrolyse comparative.

- Accumulé: fraction du bitume en place, de provenance externe aux échantillons de roche mère (ensemble des échantillons dont l'indice IMA est positif).
- Non Hobilisé: fraction du bitume en place qui a été produit par le kérogène des échantillons de roche mère, sans en avoir été expulsé.

BITUME EXPULSE

- Total: fraction du bitume qui a été expulsé des échantillons de roche mère (ensemble des échantillons dont l'indice IMA est négatif).
- Transfert interne: fraction du bitume qui a été expulsé des échantillons de roche mère, et qui a été transféré dans d'autres échantillons de la même formation.

- Bilan: fraction du bitume produit par l'ensemble de la formation et qui a quitté celle-ci (S2_{exp}). BITUME ACCUMULE

- Bilan: fraction du bitume en place, de provenance extérieure à la formation (S2_{acc}).

FORMATIONS	SONDAGE (code)	PROFONDEUR (m)	BITUME EN PLACE (%)	TAUX de PRODUCTION (%)	TAUX d' Expulsion (%)	TAUX de TRANSFERT (%)	TAUX d' IMMOBILISATION (%)	TAUX d' Accumulation (%)
<u>IABE</u> Tertiaire-	AAP Aap	592- 890 890-1234	12.35 <u>8.15</u>	0.34 <u>13.58</u> 11.02	0 <u>43.62</u> o	0 <u>13.24</u> 56.13	100 <u>43.14</u> 43.71	97.55 0 7.89
Crétacé (Black Shales)	AAE AAE	558- 770 770-1190	7.36 <u>8.05</u>	8.98 7.32 7.87	19.23 <u>0</u> 0.72	39.42 32.75 41.82	41.35 67.25 57.45	0 <u>9.52</u>
<u>LIAWENDA</u>	AAE	1190-1311	12.71	32.00	70.83	0	29.17	0
<u>KINKASI</u>	AAE Aka Ala	1311-1876 1097-1267 1198-1386	21.28 98.71 99.67	29.00 0 0	48.28 0 0	6.90 0 0	44.83 0 0	0 100 100
<u>VERMELHA</u>	AAE	1876-2064	58.78	15.90	0	0	100	86.73
MAVUHA	AAE	2064-2115	76.06	49.61	0	0	100	68.6
<u>CHELA</u>	AAE	2660-2704	39.08	38.69	0	58.78	41.22	0.76
<u>BUCOMAZI</u> faciès <u>TOCA</u>	AAE AAa	2704-2722 1878-1896	50.00 16.67	0 0	0 0	0 0	0 0	100 100
<u>BUCOMAZI</u> faciès <u>ORGANIC ZONE</u>	AAE Aaf Aao	2722-2789 2813-3252 3205-3576	13.20 25.29 50.98	37.70 36.00 60.89	74.93 39.84 41.88	0 22.20 15.64	25.06 37.95 42.48	0 0 0
<u>BUCOMAZI</u> faciès	AAG AAG AAG	1870-2040 2150-2268 2268-2344	13.72 11.67 12.66	32.11 38.87 31.61	67.14 79.03 68.75	5.71 1.61 0	27.14 19.35 31.25	0 0 0
<u>GRESEUX</u>	888 888 888	1896~2075 2840-2946 3020-3092	8.93 26.60 0.16	24.75 44.23 65.90	70.29 55.07 99.91	1.14 1.45 0.09	28.57 40.58 0	0 0 0

INNEXE V.3.6. PROPORTION DE BITUNE EN PLACE ET TAUX DE PRODUCTION - HIGRATION

LEGENDE DE L'ANNEXE V.3.6 - Caractérisation de la production et de la migration du pétrole dans les formations du Bas Zaïre - Angola. Proportion de bitume en place, par rapport à la somme du potentiel résiduel et du bitume en place. Taux de Production: (S2_{pr}/S2_p)x100, Taux d'Expulsion: (S2_{exp}/S2_{pr})x100, Taux de Transfert: (Bitume transfert interne/S2_{pr})x100, Taux d'Immobilisation: (Bitume non mobilisé/S2_{pr})x100, Taux d'Accumulation: (S2_{ecc}/Bitume en place)x100 (diagramme des valeurs à la fig.V.3.2).

ANNEXE V.4.

ANNEXE V.4. COURBES DE REACTION THEORIQUES AJUSTEES AUX COURBES DE PYROLYSE EXPERIMENTALES

LEGENDE DE L'ANNEXE V.4 - L'ajustement des courbes de réaction théoriques aux courbes de pyrolyse expérimentales permet de contrôler la validité des paramètres cinétiques calculés par la méthode de *Freeman & Carroll*. Les paramètres *E* (Energie d'activation, Kcal/mole), *n* (ordre de réaction) et le rapport *E/n* sont utilisés pour caractériser l'origine de la matière organique (kérogène ou résines & asphaltènes). *II* = Indice de Type, *IM* = Indice de Maturité. - 95 -

BUCOMAZI ORGANIC ZONE

- 97 -

Roches à kérogène (pic S2) Résines & asphaltènes (pic S2')

BUCOMAZI ORGANIC ZONE (SUITE)

ANNEXE V.5. DONNEES DE PYRO-CHROMATOGRAPHIE

A/ Pyrolysat S2 du Kérogène

				Co	lonne A			Colonne B				
S2 KEROGENE (codes)	<u>в</u> nС ₇₋₃₀ s	ipC ₁₃₋₁₉ s	arom.	nĈs <u>10-20</u> 20-30	nC ₉₋₃₀ <u>Alca</u> Alcè	<u>RAP</u> 19/17	PORTS i 18/16	pCs/nCs 16/15	(alca 15/14	<u>nes+alc</u> 14/13	<u>ènes)</u> 13/12	Pristène (1+2) nC ₂₇ s
AAE 0680 AAE 1928 AAE 2022 AAE 2736 AAE 2770	71.88 56.60 66.36 80.21 81.95	13.09 11.82 7.98 10.12 9.25	15.03 31.58 25.67 9.67 8.80	1.28 9.84 9.09 1.63 1.68	1.03 1.10 1.35 0.82 0.88	0.96 0.62 0.39 0.80 0.68	0.43 0.05 0.24 0.52 0.27	0.65 0.38 0.40 0.50 0.42	0.74 0.53 0.45 0.24 0.39	0.59 0.51 0.48 0.34 0.39	0.23 0.37 0.10 0.23 0.10	0.96 0.62 0.39 0.80 0.68

B. Distribution des hydrocarbures (pyro-chromatogramme de l'ensemble du bitume)

\$1+\$1'+\$2'	<u> 8 RELATIFS</u>				nCs					••••	<u>CP</u>	I
(codes)	nC7-358	ipC ₁₃₋₁₉ s	arom.	<u>nCs</u>	<u>10-20</u> 24-34	Prist. Phyt.	nC ₁₈	Prist. nC ₁₇	Phytane ipC ₁₈₊₁₆	$\frac{1pl_{19}}{1pl_{20}} + nl_{17}$	10-20	24-34
AAE 0680	72.98	13.51	13.51	0.19	4.81	0.27	0.54	0.13	0.25	0.81		
ALA 1272	79.06	20.94	0	0.26	0.51						1.02	0.98
AAE 1928	81.96	18.04	0	0.22	3.63	2.37	0.44	1.16	0.15	1.36	0.91	1.12
AAE 2022	70.58	29.42	0	0.42	0.45	1.56	0.43	0.86	0.65	1.02	1.06	1.11
AAE 2674	83.78	16.22	0	0.19	0.28	1.06	1.11	1.10	0.74	1.06	1.27	1.15
AAE 2736	65.89	34.11	0	0.52	1.73	5.21	1.28	6.38	0.47	3.38	1.11	1.06
AAE 2770	64.09	35.91	0	0.56	4.79	3.36	0.95	2.41	0.50	2.32	1.07	0.93

C. Pyrolysat S2' des résines & asphaltènes

								Co		Colonne B		
S2' RES.+ AS.	<u> </u>	& RELATIFS	-	nCs <u>10-20</u> 20-30	nC ₉₋₁₈ <u>Alca</u>	RAPP	ORTS ip	Cs/nCs	(alcan	ies+alcè	nes)	Pristène (1+2)
(codes)	NL7-35S	1PL13-19S	arom.	20-30	AICE	19/17	18/16	16/15	15/14	14/13	13/12	NL17S
AAE 0680	68.96	5.84	25.17	1.77	1.16	1.02	0.41	0.38	0.46	0.82	0.25	1.02
ALA 1272	94.75	1.29	3.96	0.18	1.04	0.37	0.32	0.40	0.53	0.43	0.10	0.37
AAE 1928	93.93	2.74	3.33	0.29	0.94		0.67	0.56	1.07	0.81	0.21	0.39
AAE 2022	94.82	1.82	3.36	0.27	1.08	0.37	0.23	0.37	0.49	0.40	0.11	0.37
AAE 2674	78.84	8.80	12.46	0.72	1.03	0.98	0.64	0.56	0.69	0.65	0.26	0.67
AAE 2736	82.86	8.20	8.94	0.65	0.93	0.69	0.83	0.63	0.67	0.82	0.24	0.69
AAE 2770	84.07	5.58	10.35	0.61	1.12		0.42	0.57	1.07	0.77	0.21	0.51

LEGENDE DE L'ANNEXE V.5 - Paramètres des pyro-chromatogrammes. Concentration des différents composés dans les pyrochromatogrammes, exprimées en %. *nC* : hydrocarbures à chaîne droite, *ipC*: isoprénoïdes, *s*: Σ (alcanes + alcènes), *Arom*: hydrocarbures aromatiques (benzène + toluène + xylène + indane + tétraline + naphtalène), *Pristane*: ipC₂₀, *Phytane*: ipC₁₉, *CPI*: Carbon Preference Index.

ANNEXE VI
ANNEXE VI: <u>DONNEES DE BASE SE</u> <u>RAPPORTANT AU Chapitre VI</u>

-+000+-

ANNEXE VI.1.1.

ANNEXE VI.1. PARAMETRES DES MODELES CINETIQUES DE LA GENESE DU PETROLE

ANNEXE VI.1.1. MODELES CINETIQUES DU KEROGENE (Données de pyrolyse)

A: TYPE Ia (Genre GREEN RIVER)

REACTION	ROCHE à	I	INDICES		PARAMETR	PARAMETRES CINETIQUES		TMax (°C)		<pre>% REACTION</pre>	
n [°]	(code)	IM	IPE	10	E(Kcal)	n	Log A	Exp. (Géol.	Diff.	Cum.
1 2	AAD 0300	2.3	0.29	46 41	35.05	0.68	11.39 11.54	470 457	64 64	25	2
3	AAD 0100	1.5	0.19	79	35.65	0.73	11.59	457	67	8	15
4 5	AAD U91U AAD 0200	2.1	0.27	43	37.75	0.91	12.10	477 469	73 85	10 25	25 50
6 7	AAD 0800 AAD 0500	1.5 1.5	0.22	40 35	39.93 39.52	0.58 0.63	13.06 12.77	471 478	88 88	25 20	75 95
8	AAD 0700	2.1	0.28	41	41.13	0.63	13.25	477	94	5	100

B: TYPE Ib (Crétacé d'ANGOLA & BAS ZAIRE)

	ROCHE à	I	NDICES		PARAMETR	ES CIN	ETIQUES	TMax (°C)	₿ REA(CTION
	(code)	IM	IPE	IO	E(Kcal)	n	Log A	Exp. Géol.	Diff.	Cum.
1	AAE 2766	2.1	0.33	14	48.87	0.98	15.01	469 124	1	1
2	AAE 2762	1.9	0.25	15	49.94	1.04	15.25	465 127	1	2
3	AAE 2774	2.3	0.29	12	50.37	1.00	15.44	468 130	2	4
4	AAE 2770	2.6	0.32	14	50.81	0.99	15.52	470 133	4	8
5	AAE 2272	2.6	0.39	18	52.08	1.16	15.51	472 136	10	18
6	AAA 2023	1.3	0.15	21	56.53	1.16	16.88	464 151	38	56
7	AAO 3482	2.8	0.51		59.20	1.03	17.86	478 160	35	91
8	AAF 3132	2.6	0.30	13	64.78	1.38	18.91	470 175	5	96
9	AAO 3463	2.7	0.53	13	65.62	1.20	19.35	479 179	3	99
10	AAD 3370	2.6	0.45	10	73.31	1.23	21.79	476 196	1	100

LEGENDES DES ANNEXES VI.1.1 & 2 - Valeurs des paramètres cinétiques des modèles de genèse du pétrole à partir du kérogène (annexe VI.1.1) et des résines & asphaltènes (annexe VI.1.2), basés sur les résultats de pyrolyse expérimentale. La superposition des réactions partielles constitue la réaction globale. Indices de Maturité IM, de Production Estimée IPE et d'Oxygène IO des échantillons sélectionnés. Les résultats cinétiques sont: l'énergie d'activation E (Kcal/mole), l'ordre de réaction n et le facteur de fréquence Log A (s⁻¹). IMax Exp.: température réelle au sommet des courbes expérimentales de pyrolyse; IMax Géol.: température au sommet des courbes différentielles simulées avec un gradient thermique de 2.20°C/Ma. \$ Diff.: distribution des réactions partielles constituant la réaction globale. \$ Cum.: pourcentage cumulé de la distribution des réactions partielles.

C:	TYPE	IIa	(Crétacé	d'ANGOLA	å	BAS	ZAIRE)	

		. <u> </u>								
REACTION	ROCHE à	IND	ICES	PARAMETR	ES CIN	ETIQUES	TMax	(°C)	% REA	CTION
n°	(code)	IM	IPE	E(Kcal)	n	Log A	Exp.	Géol.	Diff.	Cum.
1	AAP 0786	0.4	0	20.33	0.96	7.21	413	25	5	5
2	AAP 1046	0.9	0.16	24.90	1.03	8.37	433	28	5	10
3	AAB 0801	1.5	0.15	31.48	1.21	9.56	449	40	2	12
4	AAB 1073	1.5	0.18	32.57	1.11	10.01	449	49	2	14
5	AAB 0801	1.5	0.15	34.28	1.14	10.48	449	58	1	15
б	AAB 1075	1.5	0.20	37.45	1.45	11.10	449	70	2	17
7	FEC 7505	1.7	0.32	40.23	1.37	11.99	451	82	2	19
8	KKF 2050	1.3	0.29	41.55	1.31	12.49	446	88	2	21
9	FEC 6073	1.5	0.30	45.46	1.49	13.34		106	4	25
10	FEC 4892	1.3	0.11	46.75	1.43	13.77	444	112	12	37
11	AAO 3558	3.2	0.76	52.67	1.37	15.60	472	133	35	72
12	AAO 3537	2.8	0.62	55.25	1.34	16.36	467	145	20	92
13	AAA 2005	3.0	0.69	58.20	1.55	16.76	470	154	5	97
14	AAF 3126	2.6	0.48	61.53	1.46	17,98	470	163	2	99
15	AAF 3134	2.3	0.21	65.81	1.58	19.15	457	172	1	100

D: TYPE IIb (Miocène d'ANGOLA)

REACTION	ROCHE à	IND	ICES	PARAMETR	RES CIN	ETIQUES	TMax	(°C)	% REA	CTION
	(code)	IM	IPE	E(Kcal)	n	Log A	Exp.	Géol.	Diff.	Cum.
1	AAC 0699	1.5	0.15	22.25	1.04	7.00	449	25	6	6
2	AAB 0505	1.5	0.15	27.25	0.95	8.77	446	28	9	15
3	AAB 0801	1.5	0.15	31.48	1.21	9.56	449	40	4	19
4	AAB 1073	1.5	0.18	32.57	1.11	10.01	449	49	1	20
5	AAB 0801	1.5	0.15	34.28	1.14	10.46	449	58	1	21
6	AA8 1074	1.5	0.20	37.45	1.45	11.10	449	70	2	23
7	AAC 1032	2.3	0.23	37.86	1.29	11.20	459	76	4	27
8	AAC 1393	1.9	0.21	40.91	1.16	12.45	454	88	9	36
9	AAB 1401	1.9	0.21	43.18	1.30	12.84	454	100	26	62
10	AAB 1815	2.3	0.28	46.08	1.40	13.40	460	112	31	93
11	AAB 2143	2.7	0.44	49.21	1.42	14.22	464	124	4	97
12	AAB 2483	3.1	0.57	50.07	1.57	14.07	469	130	1	98
13	AAB 2487	2.8	0.52	51.48	1.36	14.76	465	136	1	99
14	AAB 2143	2.6	0.35	53.73	1.47	15.32	462	142	1	100

E: TYPE III (Matière organique dispersée & Charbons)

REACTION	ROCHE à	IND	ICES	PARAMET	RES CIN	TIQUES	TMax	(°C)	% REA	CTION
	(code)	IM	IPE	E(Kcal)	n	Log A	Exp.	Géol.	Diff.	Cum.
1	EZH 1880	1.7	0.13	28.39	1.38	8.54	439	28	5	5
2	AAE 1320	2.3	0.33	29.87	0.88	9.87	439	31	1	6
3	AAE 1280	2.1	0.31	31.43	0.98	10.16		37	2	8
4	AAE 1922	1.5	0.18	33.85	1.17	10.61		49	2	10
5	AAE 1360	2.6	0.33	38.31	1.21	11.78		73	2	12
6	EZH 2390	1.9	0.19	41.86	1.97	11.31	451	91	5	17
7	EZH 2510	2.6	0.27	42.41	1.99	11.31	457	94	12	29
8	EZH 2589	2.6	0.27	43.13	2.00	11.54	457	97	18	47
9	EZH 2541	2.7	0.27	44.56	2.30	11.34	457	103	12	59
10	EZH 2330	2.6	0.25	45.27	2.24	11.72	455	106	7	66
11	EZH 2360	2.6	0.26	46.32	2.16	12.16	456	109	6	72
12 ·	EZH 2470	2.6	0.25	47.11	2.10	12.55	455	112	5	77
13	EZH 2310	2.1	0.20	47.85	2.56	11.91	453	115	2	79
14	AAS 2528	4.3		45.56	2.12	11.07	490	121	4	83
15	AAB 2771	3.7		50.71	2.13	12.76	484	139	3	86
16	AAT 0786	4.7		52.61	3.40	10.41	504	151	3	89
17	AAE 2067	3.0	0.32	59.89	1.24	18.03		157	2	91
18	AAS 3470	2.8		63.10	2.67	15.87	465	169	2	93
19	AAS 3507	2.6		64.12	2.87	15.55	458	175	2	95
20	AAT 0290	3.5	0.76	65.17	3.17	14.91	479	184	2	97
21	AAS 1425	5.0		65.80	2.41	15.19	533	208	1	9 8
22	AAS 1506	5.2		69.35	3.41	14.28	544	214	1	99
22	AAS 0770	6.0		80.66	3.37	17.39	649	244	1	100

ANNEXE VI.1.2.

ANNEXE VI.1.2. MODELES CINETIQUES DES RESINES & ASPHALTENES (Données de pyrolyse)

A: TYPE Ia (Genre GREEN RIVER)

	RESINES &	INDICES	PARAMETRES CINETIO	QUES TMax (°C)	<pre>% REACTION</pre>
n°	(code)	IM	E(Kcal) n Lo	og A Géol.	Diff. Cum.
1 2	AAD 1000 AAD 0800	1.5 1.5	50.84 0.84 10 55.84 0.89 1	6.67 121 7.54 147	20 20 80 100

B: TYPE Ib (Crétacé d'ANGOLA & BAS ZAIRE)

	RESINES &	INDICES	PARAMETR	RES CIN	ETIQUES	TMax (°C)	% REA	CTION
	(code)	IM	E(Kcal)	n	Log A	Géol.	Diff.	Cum.
1	AAO 3561	3.1	49.94	0.94	15.42	127	5	5
2	AAG 2270	2.6	50.26	0.56	16.79	121	10	15
3	AAG 2272	2.6	50.79	0.69	16.67	124	20	35
4	AAG 2329	1.9	51.29	0.83	16.28	130	30	65
5	AAE 2789	2.6	53.55	0.69	17.65	130	20	85
6	AAE 2770	2.6	54.71	0.54	17.81	142	10	95
7	AAE 2766	2.1	58.25	0.75	18.62	151	5	100

C: TYPE IIa (Crétacé d'ANGOLA & BAS ZAIRE)

	RESINES &	INDICES	PARAMETRE	S CIN	ETIQUES	TMax (°C)	₿ REAI	CTION
	(code)	IM	E(Kcal)	n	Log A	Géol.	Diff.	Cum.
1 2 3 4 5	AAP 0630 AAD 3558 AAO 3560 AAA 2870 AAO 3564	0.7 3.2 3.2 2.9 3.2	32.68 40.65 42.15 44.29 47.90	0.96 0.93 0.94 1.03 1.19	11.63 12.83 13.33 13.56 14.53	31 88 94 106 118	5 5 27 43 20	5 10 37 80 100

D: TYPE IIb (Miocène d'ANGOLA)

	RESINES &	INDICES	PARAMETR	ES CIN	ETIQUES	TMax (°C)	₿ REA	CTION
n°	(code)	IM	E(Kcal)	n	Log A	Géol.	Diff.	Cum.
1 2 3 4 5 6	AAB 1073 AAB 0801 AAB 2143 AAB 1075 AAB 0801 AAB 1401	1.5 1.5 2.6 1.5 1.5 1.9	36.84 39.98 40.49 44.25 47.51 49.52	1.39 1.39 1.14 1.52 1.51 1.45	10.88 12.06 12.22 12.52 13.71 14.59	67 79 88 106 115 121	5 5 10 40 35 5	5 10 20 60 95 100

E: TYPE III (Matière organique dispersée & Lignite)

	RESINES &	INDICES	PARAMETRES CI	VETIQUES	TMax (°C)	<pre>% REACTION</pre>
	(code)	IM	E(Kcal) n	Log A	Géol.	Diff. Cum.
1 2 3	AAS 5200 AAP 0850 AAS 5100	2.6	39.672.2341.102.1445.502.49	11.51 12.60 13.10	61 61 82	10 10 10 20 80 100

ANNEXE VI.2. HISTOIRE THERMIQUE DES ECHANTILLONS DU SONDAGE AAB (ANGOLA)

Conditions GEOLOGIQUES

Température de surface	: 25°C
Gradient géothermique	: 30°C/km
Taux d'enfouissement	: 73.33 m/Ma (Ma = Million d'années)
Gradient thermique	: 2.20°C/Ma ou 4.186 x 10 ⁻¹² °C/mn

Conditions de SIMULATION

Intervalle d'intégration : 3°C ou 1.36 Ma ou 100 m

.

UNIVERSITE CATHOLIQUE DE LOUVAIN Faculté des Sciences Laboratoires de Géologie Générale

ETUDE GEOCHIMIQUE DE LA MATIERE ORGANIQUE SEDIMENTAIRE PAR PYROLYSE

Caractérisation des roches à kérogène et des bitumes par pyrolyse comparative et analyse cinétique. Application au secteur pétrolier du Bas Zaïre – Angola

Volume III : Annexes

1

Dissertation présentée en vue de l'obtention du grade de DOCTEUR EN SCIENCES par

Damien DELVAUX de FENFFE

Louvain-la-Neuve Octobre 1988

VOLUME III: ANNEXES

<u>ANNEXE I</u>	· 1
<u>ANNEXE II</u>	• <u>13</u>
ANNEXE III Données de base se rapportant au chapitre III (pyro-chromatographie, pyrolyse comparative, chromatographie MPLC et analyse du CO2 par pyrolyse	. <u>21</u>
<u>ANNEXE IV</u>	• <u>41</u>
ANNEXE V	• <u>67</u>
ANNEXE VI	<u>101</u>

-+000+-

ANNEXE I

.

ANNEXE I: <u>RESUME DES PRINCIPAUX</u> CONCEPTS EN GEOCHIMIE ORGANIQUE

.

PLAN

I.2.1. DIAGENESE PRECOCE: Formation du kérogène et des fossiles géochimiques

I.2.2. CLASSIFICATION ET COMPOSITION DES KEROGENES

I.2.3. COMPOSITION DES RESINES & ASPHALTENES

I.3.1. DIAGENESE: Désoxygénation

I.3.2. CATAGENESE: Genèse d'huile et de gaz

I.3.3. METAGENESE: Condensation du noyau carboné

I.3.4. METAMORPHISME: Graphitisation du noyau carboné

I.4.1. MIGRATION PRIMAIRE ET SECONDAIRE

I.4.2. EVOLUTION DU PETROLE DANS LE RESERVOIR

-+000+-

Les concepts les plus couramment admis en géochimie organique concernant l'origine, la genèse, la migration, l'accumulation, la maturation et l'altération du pétrole sont repris brièvement dans cette première annexe. Ces notions sont tirées essentiellement des travaux de Tissot & Welte (1978), Barker (1979), Hunt (1979), Durand ed. (1980), Perrodon (1980), Tissot & Welte (1984), Robert (1985), et Connan (1987). Pour de plus amples informations sur les théories géochimiques et leurs applications à l'exploration pétrolière, le lecteur se reportera à ces ouvrages. Un glossaire des principaux termes géochimiques utilisés dans le cadre de cette thèse est repris à l'annexe II, qui contient également des références additionnelles.

1.1. ORIGINE ET COMPOSITION DE LA MATIERE ORGANIQUE DES SEDIMENTS

La matière organique de la majorité des roches sédimentaires a été incorporée aux sédiments meubles dans des conditions aquatiques. Elle provient de débris de la matière vivante. La production, l'accumulation et la préservation de ces débris organiques sont indispensables pour que des roches mères de pétrole puissent se constituer et, à plus long terme, pour que du pétrole ou du gaz puisse être ultérieurement produit.

Les principales sources de matière organique dans les sédiments sont, par ordre d'importance: le *phytoplancton*, le *zooplancton*, les *plantes supérieures* terrestres et les *bactéries*.

La productivité biologique des environnements aquatiques (essentiellement marins) est approximativement égale à celle des environnements aériens. Les chances de préservation de la matière organique sont cependant très faibles dans les milieux aérés car l'abondance d'oxygène favorise l'activité des bactéries qui dégradent les molécules organiques. Dans les milieux sub-aquatiques, les boues argileuses ou calcareuses limitent l'accès de l'oxygène dissous aux sédiments; la dégradation de la matière organique par les bactéries est rapidement limitée et elle devient anaérobie.

L'incorporation de la matière organique aux sédiments est dépendante de la compétition entre deux processus antagonistes: les processus de concentration de la matière organique et les processus qui la détruisent.

Les organismes vivants sont généralement constitués de composants chimiques appartenant à ces quatre groupes majeurs: *protéines* (acides aminés), *lipides* (graisses, cires, pigments...), *carbohydrates* (sucres: cellulose...) et *lignine* dans les plantes supérieures (Barker, 1979; Hunt, 1979; Huc, 1980; Mackenzie & al.,

- 2 -

cellulose...) et *lignine* dans les plantes supérieures (Barker, 1979; Hunt, 1979; Huc, 1980; Mackenzie & al., 1982). Ces composés apparaissent en proportion différente selon le type d'organisme. La matière organique du plancton marin est très riche en protéines (24-77%), et contient des quantités appréciables de lipides (5-25%) et de carbohydrates (moins de 36%). Les plantes supérieures, par contre, sont composées en grande partie de carbohydrates (35-50% de cellulose), de lignine (15-25%) et, en moindre proportion, de protéines et de lipides (20-40%). L'origine des débris de la matière vivante a donc une forte influence sur la composition de la matière organique sédimentaire et ultérieurement, sur la composition du pétrole (Philippi, 1974)

Les lipides sont les principaux précurseurs des hydrocarbures; ils contribuent donc pour une large part aux constituants du pétrole. Les *hydrocarbures* peuvent être *saturés* (alcanes), ou *insaturés* (alcènes); leurs chaînes sont *droites* (normales: n-), *branchées* (iso-), *cycliques* (cyclo-), ou *aromatiques* (arom.). Dans la matière vivante et les sédiments récents, les n-alcanes en C_3-C_{10} sont pratiquement absents. Les plantes primitives, les bactéries et les algues montrent une concentration maximale entre n C_{17} et n C_{21} , alors que les plantes plus spécialisées ont un maximum entre n C_{27} et n C_{31} (fig.AI.1).

Les hydrocarbures de la matière vivante et des sédiments récents contiennent souvent une proportion différente d'alcanes à nombre pair d'atomes de carbone, et d'alcanes à nombre impair d'atomes de carbone. L'expression quantitative de cette distribution est le rapport impair/pair appelé *CPI* (Carbon Preference Index, Bray & Evans, 1961).

DISTRIBUTION DES n-ALCANES

Fig. Al.1 - Distribution des n-alcanes de différents types de matière organique vivante en fonction du nombre d'atomes de carbone (d'après Barker, 1979).

Les *isoprénoïdes* sont des isomères d'alcanes particulièrement abondants dans les hydrocarbures. Ils sont directement reliés aux précurseurs biologiques, tels que la chaîne phytol de la chlorophylle. Les isoprénoïdes les plus importants sont le *Pristane* ipC_{19} (19 atomes de Carbone), et le *Phytane* ipC_{20} (20 atomes de carbone). Ils sont présents dans les organismes vivants, les sédiments récents et anciens, et dans les pétroles bruts. Leur abondance relative, mesurée par le rapport ipC_{19}/ipC_{20} , est utilisée comme indicateur de l'environnement de dépôt (Tissot & Welte, 1978; Barker, 1979).

- 3 -

ANNEXE I.2. TRANSFORMATION DE LA MATIERE ORGANIQUE VIVANTE EN KEROGENE

Les transformations physico-chimiques de la matière organique durant l'histoire géologique des bassins sédimentaires peuvent être regroupées en plusieurs stades d'évolution: la *diagenèse précoce*, la *diagenèse* sensu stricto, la *catagenèse*, la *métagenèse* et le *métamorphisme* (fig._AI.2). Ces transformations ne sont pas des processus isolés au sein de la roche sédimentaire, mais elles vont de pair avec l'évolution de la phase solide inorganique (argiles, carbonates...), et de l'eau interstitielle des sédiments.

L'ensemble de la diagenèse, catagenèse et métagenèse de la matière organique correspondent à la diagenèse minérale.

EVOLUTION DE LA MATIERE ORGANIQUE AVEC

Fig. "I.2 - Evolution progressive de la matière organique des sédiments au cours des différentes étapes de la maturation due à l'enfouissement. A la fin de la métagenèse, toute la matière organique est transformée en carbone graphite et en méthane (modifié, d'après Tissot & Welte, 1984). Ro: Réflectance de la vitrinite.

I.2.1. DIAGENESE PRECOCE: formation du kérogène et des fossiles géochimiques

Au cours de la *diagenèse précoce*, la matière organique incorporée aux sédiments se transforme progressivement en kérogène, avec la production de *méthane biogénique* (Tissot & Bessereau, 1982).

Tout d'abord, la matière organique subit une biodégradation bactérienne dont l'intensité dépend du caractère oxydant ou réducteur du milieu. Un processus important en milieu anaérobie est la réduction des sulfates SO_4^- en sulfures H₂S par les bactéries. Dans les boues argileuses où le fer est normalement abondant, le H₂S se combine progressivement avec le fer, pour former de la pyrite; tandis que dans les boues carbonatées pauvres en fer, le sulfure se combine directement à la matière organique résiduelle (Berner, 1973; Tissot & Welte, 1984; Berner, 1985, Suess, 1979; François, 1987).

A la fin de la dégradation biochimique des biopolymères, les protéines et les carbohydrates sont morcelés en acides aminés et en sucres individuels. Ces constituants vont progressivement se recombiner pour former des structures polycondensées, précurseurs du kérogène: *acides fluviques* et *acides humiques*. La perte de groupements fonctionnels de ces acides provoque leur insolubilisation progressive. Au terme de cette évolution, la matière organique acquiert la structure du kérogène et devient totalement insoluble dans les solvants organiques.

Certaines fractions de la matière organique vivante sont incorporées directement aux sédiments, sans passer par les stades acides fluviques et acides humiques. Ces fractions restent solubles à la fin de la diagenèse précoce et constituent les *fossiles géochimiques*.

1.2.2. CLASSIFICATION ET COMPOSITION DES KEROGENES

Le concept du *kérogène* a fortement évolué depuis 1966, jusqu'à nos jours. Originellement, ce mot a été utilisé pour décrire le contenu organique d'un schiste pétrolier qui produit par distillation, des huiles paraffiniques (du Grec *Kéros* = cire). Actuellement, le terme kérogène désigne la *matière organique sédimentaire insoluble dans les solvants organiques* (Durand, 1980). Ce terme englobe la matière organique disséminée (kérogène sensu stricto) et la matière sédimentaire humique (lignite et charbons).

La fraction soluble de la matière sédimentaire est appelée bitume. A la fin de la diagenèse précoce, ce terme se rapporte uniquement aux fossiles géochimiques hérités directement de la matière vivante. Au cours de l'enfouissement ultérieur, le bitume va s'enrichir en produits de dégradation du kérogène: *hydrocarbures saturés*, *hydrocarbures aromatiques* et *résines & asphaltènes* (fig._AI.3).

La microscopie optique permet de reconnaître dans le kérogène, des restes organiques biens définis (algues, spores, pollens, tissus végétaux...), de la matière organique amorphe (fluorescente), de la matière organique finement disséminée et des associations matière organique - pyrite (Alpern, 1980; Combaz, 1980). Les constituants visibles en lumière réfléchie sont appelés *macéraux*. On y trouve la *Liptinite*, la *Vitrinite*, l'*Inertinite*, l'*Huminite* et la *Bituminite*.

- 5 -

MATIERE ORGANIQUE DES ROCHES à KEROGENE

Fig. "I.3 - Occurence des différentes classes de matière organique dans une roche à kérogène (modifié, d'après Tissot & Welte, 1984).

Différents types de kérogène peuvent être reconnus par les méthodes optiques et par les analyses physico-chimiques. Les principaux sont: les types *I*, *II* et *III*. L'étude de la composition chimique en Carbone, Hydrogène et Oxygène des kérogènes a permis à Tissot & al. (1974) de définir les "chemins d'évolution" respectifs des kérogènes, sur un diagramme *H/C-O/C* de *Van Krevelen* (fig._AI.4), de la même manière que pour la caractérisation des charbons (Van Krevelen & Schyer, 1957). Récemment, un type *IV* à été proposé pour décrire des kérogènes inertes (Tissot & Welte, 1984) et le type II a été subdivisé en genres *IIa* et *IIb* (Mukhopadhyay & al., 1985). Dans le chapitre cinétique de ce travail, nous subdivisons encore le type I en genres *Ia* et *Ib*. Les principales caractéristiques physico-chimiques des différents types de kérogène ont été étudiées par Durand & al., (1973); Espitalié & al., (1973); Tissot & al. (1974); Alpern & al., (1978); Castex (1979); Rouxhet & al. (1980); Behar & Vandenbroucke (1986)... DIAGRAMME DE VAN KREVELEN H/C - 0/C

Fig. "I.4 - Classement des kérogènes dans un diagramme H/C-O/C de Van Krevelen. Chemins d'évolution chimique des principaux types de kérogène avec l'enfouissement et leurs produits de dégradation (modifié, d'après Tissot & Welte, 1984).

Les différents types de kérogène (matière organique disséminée) sont :

- Kérogènes lacustres de type I à rapports atomiques H/C élevés (1.5 ou plus) et O/C faibles (inférieurs à 0.1). Ils sont constitués en majeure partie de matériel *lipidique* à chaînes aliphatiques longues. L'oxygène est présent essentiellement sous forme de liaisons ester. Ce sont des roches mères d'huile d'excellente qualité, avec un potentiel élevé en huile très paraffinique. Dans le cadre de ce travail, nous distinguons :

> - Les kérogènes de *type la* formés par une intense *biodégradation bactérienne* de matières organiques à contenu élevé en lipides (algues, spores et pollens) dans un environnement lacustre hautement anoxique (kérogène de la formation Green River, Utah, USA).

> - les kérogènes de *type Ib* formés de l'accumulation sélective de matière organique *d'origine* algaire (algues du genre *Botryococcus*), dans un milieu lacustre ou lagunaire (kérogènes de la formation Bucomazi du Bas Zaïre - Angola).

- Kérogènes marins de type IIa à rapports atomiques H/C relativement élevés (1.1 à 1.5) et O/C faibles (inférieurs à 0.1). Ils sont constitués de chaînes aliphatiques avec une certaine proportion de noyaux polyaromatiques, et de groupements hétéroatomiques (composés contenant N, S & O, sous forme de cétones, acides,

esters et liaisons sulfure). La matière organique y est d'*origine planctonique* et elle a été déposée dans un environnement marin réducteur. Ce sont de bonnes roches mères d'huile.

- kérogènes mixtes de type IIb à rapports atomiques H/C entre 0.8 et 1.3 et 0/C faibles (inférieurs à 0.1). Ils sont constitués d'un mélange de matières organiques d'origine marine (planctonique) et d'origine terrestre (débris de végétaux supérieurs). L'environnement de dépôt est moyennement réducteur, en situation marine côtière et avec un apport continental relativement important. Ce sont des roches mères d'huile et de gaz de qualité moyenne mais elles sont de loin les plus abondantes dans la nature.

- kérogènes terrestres de type III à rapports atomiques H/C faibles (0.5-0.8) et 0/C élevés (0.2 0.3). Ils contiennent une proportion importante de noyaux polyaromatiques et de composés hétéroatomiques (cétones et acides mais pas de groupements esters). Ils dérivent essentiellement de plantes supérieures terrestres. Ce type de kérogène est fréquent dans les épaisses séries détritiques deltaïques ou de bordure continentale. Ce sont des roches mères de médiocre qualité, principalement à gaz.

- kérogènes inertes de type IV à rapports atomiques H/C inférieurs à 0.5 et O/C relativement élevés (0.2-0.3). Ils sont riches en noyaux aromatiques et en groupes oxygénés. Ils sont formés soit de matière organique déposée dans des marais ou bassins peu profonds en milieu très oxydant, soit de matière organique très évoluée (recyclée). Les kérogènes de type IV sont incapables de produire des hydrocarbures.

1.2.3. COMPOSITION DES RESINES & ASPHALTENES

Les résines & asphaltènes sont des composés hétéroatomiques à poids moléculaire élevé, contenus dans le bitume des huiles lourdes. Les asphaltènes sont définis comme étant solubles dans le benzène, mais précipités par excès d'alcane (nC_{5-7}). Les résines sont solubles dans le nC_5 et le nC_6 , mais elles sont précipitées par le nC_4 (Hernandez & Choren, 1979; Thyrion, 1980; Tissot, 1984; Speight & al., 1985). Leurs structures ont été étudiées par Yen (1974), Tissot (1984b) et Béhar & Vandenbroucke (1986).

L'étude comparée des produits de décomposition thermique de kérogènes et d'asphaltènes de bitume montre que les asphaltènes ont une structure chimique similaire à celle des kérogènes dont ils sont issus (Moschopedis & al., 1978; Rubinstein & al., 1979; Béhar & Pelet, 1985; Pelet & al., 1985). Ils ont des poids moléculaires plus faibles, des rapports *H/C* plus élevés et des rapports *O/C* plus faibles que les kérogènes.

Les résines & asphaltènes sont considérés comme étant les premiers produits de dégradation du kérogène. Ils se seraient formés par perte des chaînes latérales du kérogène suite à la rupture de liaisons oxygénées faiblement énergétiques (acides et cétones). Les résines & asphaltènes sont mis en solution dans les bitumes et les huiles, grâce à la présence des hydrocarbures de plus faible poids moléculaire.

ANNEXE I.3. GENESE DU PETROLE PAR ENFOUISSEMENT DES ROCHES A KEROGENE

La genèse d'huile et de gaz à partir du kérogène est due à l'augmentation progressive de la température du sédiment, sous les effets combinés de l'*enfouissement* et du *gradient géothermique* (Philippi, 1965). Ce phénomène provoque la *maturation* du kérogène et la condensation des assemblages polyaromatiques, qui mènent progressivement le kérogène vers la structure du carbone graphite (fig._AI.2). A la fin de la maturation, le potentiel pétrolier initial du kérogène est réduit à néant car le kérogène a libéré toute l'huile et tout le gaz qu'il était capable de produire (Tissot & Welte, 1978 & 1984; Pelet, 1980). L'origine lacustre, marine ou terrestre de la matière organique du kérogène a une grande influence sur la composition du pétrole produit au cours de l'enfouissement (Philippi, 1974) et sur les proportions d'hydrocarbures générés (85% pour le type I, 70% pour le type II, 30% pour le type III et 0% pour le type IV).

L'état d'évolution de la matière organique est généralement donné par le Pouvoir Réflecteur de la Vitrinite (*PRV*), mesuré par l'indice R_{σ} (%). D'autres indices de maturation thermique sont également utilisés (voir Foscolos & al., 1976; Héroux & al., 1979; Oudin & al., 1984 et Tissot & Welte, 1984).

I.3.1. DIAGENESE: Désoxygénation

Pendant la diagenèse ($R_o < 0.5$ %), le kérogène perd principalement de l'oxygène, qui est éliminé sous forme de CO_2 et de H_2O . Sur le diagramme de *Van Krevelen*, la diagenèse se marque par une diminution sensible du rapport O/C, et une diminution relativement faible du rapport H/C (fig.AI.4). La perte en oxygène provient de l'élimination progressive des liaisons oxygénées labiles: groupements acides et cétones (Robin & al., 1977). L'oxygène des liaisons éther n'est pas affecté au cours de la diagenèse. Parallèlement à l'élimination d'oxygène, il y a une faible libération d'hydrocarbures (chaînes latérales attachées au kérogène par les liaisons oxygénées labiles) et une production de résines & asphaltènes. L'huile produite durant la diagenèse est riche en biomarqueurs (isoprénoïdes).

I.3.2. CATAGENESE: Genèse d'huile et de gaz

La catagenèse est l'étape principale de la genèse d'hydrocarbures $(0.5\% < R_o < 2.0\%)$. Le kérogène perd essentiellement de l'hydrogène, éliminé tout d'abord sous forme d'hydrocarbures liquides (*Zone à Huile*: craquage du kérogène, R_o entre 0.5 et 1.3\%), ensuite sous forme d'hydrocarbures gazeux (*Zone à Gaz Humide*: craquage du kérogène résiduel et de l'huile déjà formée, R_o entre 1.3 et 2.0%). En même temps, les molécules soufrées de l'huile et du kérogène sont craquées en libérant du H₂S. Pour les types I et II, H/C diminue fortement, et 0/C ne diminue pratiquement plus (fig. I.4). Pour le type III, H/C diminue peu, mais 0/C diminue toujours fortement. Pour le type IV, seul le rapport 0/C diminue. L'évolution de la structure du kérogène est

- 9 -

marquée par une disparition progressive des chaînes aliphatiques, une élimination presque complète des groupements oxygénés et soufrés et une aromatisation plus poussée des nucléi polyaromatiques.

I.3.3. NETAGENESE: Condensation du noyau carboné

La métagenèse $(2.0\% < R_o < 4.0\%)$ est l'étape du réarrangement des noyaux aromatiques et de la polycondensation, par élimination des groupements fonctionnels et par craquage des liaisons carbone-carbone. Les couches aromatiques sont espacées plus régulièrement, avec une plus grande orientation préférentielle. Cette restructuration se réalise avec la libération de faibles quantités de méthane: c'est la *Zone à Gaz Sec*.

La composition des différents types de kérogène converge vers un chemin d'évolution commun (tronc commun), caractérisé par de faibles valeurs de H/C et O/C (fig. I.4). Les hydrocarbures du bitume resté en place donnent du méthane sec par craquage.

I.3.4. METAMORPHISME: Graphitisation du noyau carboné

Le métamorphisme ($R_o > 4.0$ %) est l'étape de la conversion finale du kérogène en *carbone graphite*, marquée surtout par les réactions minérales du début du faciès Schiste Vert (Kübler & al., 1979; Tissot & Welte, 1984).

ANNEXE I.4. MIGRATION ET ACCUMULATION DU PETROLE

Les accumulations de pétrole se trouvent généralement dans des roches poreuses et perméables à grains grossiers, qui contiennent peu de kérogène ou n'en contiennent pas (roches réservoirs). Le pétrole, par contre, est produit en quantités appréciables par action géothermique, dans des roches sédimentaires à grains fins, à partir du kérogène disséminé (roches mères). Entre ces deux milieux géologiques très différents et parfois éloignés de plusieurs centaines de mètres ou de quelques kilomètres, le pétrole dispersé dans la roche mère a dû migrer vers le réservoir, avant de pouvoir se concentrer dans celui-ci (Magara, 1980). La migration du pétrole vers les réservoirs se produit en deux étapes (fig.AI.5): la migration primaire (de la roche mère à la roche réservoir adjacente) et la migration secondaire (de la roche réservoir adjacente à la structure piège). Dans la structure piège, le pétrole peut encore subir une migration tertiaire et une altération.

MIGRATION ET ACCUMULATION DU PETROLE

Fig. "I.5 - Représentation schématique de la migration et de l'accumulation d'hydrocarbures dans l'évolution d'un bassin sédimentaire (d'après Tissot & Welte, 1984).

I.4.1. MIGRATIONS PRIMAIRE ET SECONDAIRE

L'ensemble des phénomènes physico-chimiques qui provoquent l'expulsion du pétrole à partir du kérogène et son transport au travers des pores de la roche mère, pour atteindre des couches plus poreuses et perméables de roches réservoirs adjacentes est appelé *migration primaire* (fig._AI.5.) (Tissot, 1966; Barker, 1979; Hunt, 1979; Durand, 1983; Nackenzie & al., 1983; Ungerer & al., 1983; Tissot, 1984; Tissot & Welte, 1984). Deux modes de migration sont principalement retenus: la migration par mouvement des eaux intersticielles (Barker, 1977; Bray & Forster, 1980) et la migration en phase hydrocarbonée (Tissot & Welte, 1984). Les distances couvertes par la migration primaire sont de l'ordre du mètre ou de la dizaine de mètres.

Le mouvement du pétrole à l'intérieur des roches réservoirs constitue la migration secondaire (fig.AI.5). Ces roches sont poreuses et perméables et elles drainent l'huile expulsée de la roche mère suite à la migration primaire, vers la surface. La migration secondaire se termine soit par l'accumulation du pétrole dans une structure piège, soit par des suintements à la surface de sol. Elle peut opérer sur des distances allant jusqu'à la dizaine ou même la centaine de kilomètres.

La migration primaire s'accompagne souvent d'un *effet chromatographique* qui modifie parfois considérablement la composition de l'huile expulsée, par rapport à celle du bitume initialement produit. Les argiles retiennent préférentiellement les composés les plus polaires (résines & asphaltènes), tandis que les hydrocarbures saturés (n-alcanes) de faible poids moléculaire migrent le plus facilement. Il en résulte un enrichissement relatif des huiles brutes en hydrocarbures saturés de faible poids moléculaire et un appauvrissement en résines & asphaltènes (Leythaeuser & al., 1984).

I.4.2. EVOLUTION DU PETROLE DANS LE RESERVOIR

L'huile et le gaz, après s'être accumulés dans les réservoirs peuvent encore subir d'importantes transformations qui en modifient parfois considérablement la composition globale et la quantité économiquement exploitable.

La *migration tertiaire* ou *dismigration* est la perte d'hydrocarbures par migration au travers de la couverture imperméable du réservoir (fig. I.5). Cet effet est particulièrement important pour les gaz (Leythaeuser & al., 1982).

L'*altération* du pétrole dans le réservoir est due principalement à la maturation thermique, la biodégradation, le lavage à l'eau, l'oxydation et l'évaporation (Bailey & al., 1974; Milner & al., 1977; Connan & Restlé, 1984; Lafargue & Baker, 1988).

-+000+-

ANNEXE II

ANNEXE II: <u>GLOSSAIRE DES TERMES</u> SPECIALISES

Ce glossaire est réalisé à partir des définitions tirées des principaux ouvrages en géochimie organique: Tissot & Welte (1978); Barker (1979); Hunt (1979); Durand ed. (1980), Perrodon (1980); Tissot (1984a); Tissot & Welte (1984); Robert (1985) et Connan (1987). Des références additionnelles sont reportées pour certaines définitions.

- Acides Humiques : les acides humiques sont synthétisés dans les sols ou dans les sédiments subaquatiques, au cours de la diagenèse précoce. Les acides humiques formés dans les sédiments sont des précurseurs du kérogène.
- Alcanes : hydrocarbures saturés à chaîne droite (n-alcanes), branchée (iso-alcanes) ou cyclique (cyclo-alcanes ou naphtènes).
- Alcènes : hydrocarbures insaturés à chaîne droite, branchée ou cyclique. Il s'agit généralement d'alcènes-1 (double liaison entre les deux premiers atomes de C), ou parfois d'alcènes-2 (double liaison entre le 2° et le 3° atome de C).
- Aliphatiques : alcanes à chaîne linéaire ou ramifiée.
- Allochtone (matière organique) : matière organique remaniée dans une série sédimentaire; ce matériel a pu être transformé thermiquement dans sa formation d'origine, avant d'être incorporé dans une nouvelle série.
- Amorphe : matière organique paraissant comme non figurée au microscope optique (plus aucune morphologie visible, par opposition aux macéraux); elle proviendrait essentiellement de la fraction lipide de la matière organique sédimentaire.
- Anchizone : stade faisant suite à la diagenèse minérale et précédant le début du métamorphisme (épizone). Les limites inférieures et supérieures de l'Anchizone ont été définies par Kübler (1967), par la cristallinité de l'illite et elles ont été corrélées à l'échelle de réflectance de la vitrinite *R*, (Kübler & al., 1979; Teichmüller & al., 1979; Frey & al., 1980). Du point de vue de la maturité organique, ce stade correspond approximativement à la fin de la métagenèse.
- Aromatiques : hydrocarbures contenant un ou plusieurs noyaux benzène. Les monoaromatiques ont un noyau benzène auquel est rattachée une chaîne aliphatique (benzène, toluène, xylène...). Les aromatiques polycycliques contiennent plusieurs noyaux benzène rattachés par une chaîne constituée de deux atomes ou plus de carbone.
- Asphaltes : composés *NSO* des bitumes et des huiles, solide à semi-solide, constitué principalement de C et H mais contenant également N,S et O.

- Asphaltènes : Composés *NSO* des bitumes et des huiles, solubles dans les composés polaires (Benzène) mais insolubles dans un excès de pentane, d'hexane ou d'heptane. Les asphaltènes sont fréquemment associés aux résines.
- Biodégradation bactérienne : dégradation de la matière organique par des bactéries en milieu oxygéné ou réducteur et à faible profondeur, pendant le stade de la diagenèse précoce. Lorsque tout l'oxygène disponible a été utilisé, la biodégradation devient anaérobie : les bactéries sulfato-réductrices consomment l'oxygène du sulfate SO₄²⁻., en le réduisant en H₂S. Si le fer est abondant, l'H₂S se combine pour former de la pyrite; dans le cas contraite, il se combine à la matière organique résiduelle. Lorsque tous les sulfates ont été réduits, les bactéries se mettent à dégrader la matière organique en produisant du méthane biogénique (Suess, 1979; Tissot & Bessereau, 1982; Berner, 1973 & 1985; François, 1987).
- Biogénique (gaz) : gaz composé essentiellement de méthane, produit au cours de la diagenèse précoce et au début de la diagenèse (sensu stricto), par la biodégradation bactérienne de la matière organique sédimentaire, à une profondeur pouvant aller jusqu'à 1000 m (Tissot & Bessereau, 1982).
- Biomarqueurs (ou fossiles géochimiques) : Composés organiques formés originellement par des organismes vivants, dont la structure est suffisamment stable pour pouvoir encore être reconnue dans l'huile ou la matière organique des sédiments anciens.
- Bitume : selon la définition de Durand (1980) : fraction de la matière organique sédimentaire qui est soluble dans les solvants organiques polaires (chloroforme ou dichlorométhane). Le bitume immature de la fin de la diagenèse précoce contient uniquement des *fossiles géochimiques* formés en ligne directe à partir de la matière organique incorporée au sédiment. Au cours de la catagenèse, le bitume s'enrichit en produits de dégradation du kérogène : hydrocarbures saturés, hydrocarbures aromatiques et résines & asphaltènes. Dans le cadre de ce travail, on réserve ce terme pour la MO soluble présente dans les roches mères. La MO soluble des roches réservoirs est appelée *huile*. On emploie parfois aussi le terme plus général de *pétrole* pour désigner le bitume ou l'huile.

Bituminite : macéral de matière organique non figurée, formé de particules bitumineuses solides.

Botryococcus : algue coloniale lacustre, famille des Botryococcacées, classe des Chlorophycées.

- CAI (Conodont Alteration Index) : Indice d'altération de la couleur des conodontes, fournissant une échelle de diagenèse corrélable à celle de la réflectance de la vitrinite (Epstein & al., 1977).
- Carbohydrates : groupe de composés organiques comprenant les sucres et leurs polymères (polysaccharides : cellulose, pectine, acide alginique...). Ceux-ci occupent une place importante parmi les constituants organiques de la matière vivante.
- Carbone graphite : carbone ayant acquis la structure du graphite, marquant le terme de la dégradation thermique du kérogène, dès le début du métamorphisme.
- Catagenèse : stade de maturation organique correspondant à la dégradation du kérogène par diminution du contenu en hydrogène. Stade de la production principale d'huile et de gaz (*Zone à Huile* : 0.5% < Ro < 1.3%; *Zone à Gaz Humide* : $1.3\% < \text{R}_{\circ} < 2.0\%$).

Cellulose : polysaccharide de formule $(C_6H_{10}O_5)_n$ constituant les parois cellulaires des végétaux supérieurs.

- CG-MS : (chromatographie en phase gazeuse spectrométrie de masse) : appareillage réalisé par le couplage d'un spectromètre de masse à un chromatographe en phase gazeuse, permettant l'analyse quantitative et qualitative des produits constitutifs des chromatogrammes.
- Charbon : roche contenant plus de 50% en poids et 70% en volume de matière organique sédimentaire. Les charbons humiques proviennent de débris de plantes supérieures, déposés sous conditions aérobies. Les charbons sapropéliques proviennent de spores, pollens et d'algues déposés sous conditions anaérobies.

- Chlorophylle : molécule support de la réaction de photosynthèse, constituée d'un noyau porphyrine attaché à une chaîne latérale phytol. La chlorophylle est une source quantitativement importante des isoprénoïdes et des porphyrines dans les huiles.
- Chromatographie en phase gazeuse : séparation des composés de mélanges complexes dans une colonne chromatographique, avec un courant de gaz comme phase porteuse (généralement He). La séparation est réalisée dans une colonne chromatographique remplie d'une phase stationnaire qui retarde préférentiellement les composés de point d'ébullition les plus élevés. Le chromatographe est couplé généralement à un détecteur FID (détection quantitative des composés hydrocarbonés), ou à un spectromêtre de masse (détection quantitative et identification de composés sélectionnés).
- Cires : les cires naturelles (protection des plantes) sont des lipides avec un groupe alcool à nombre pair d'atomes de carbone compris entre C_{16} et C_{36} .
- Corrélations géochimiques : recherches des correspondances entre les roches à kérogène, les bitumes des roches mères et l'huile ou le gaz des réservoirs, pour tenter de retracer l'origine des hydrocarbures et de découvrir leurs chemins de migration. Les principaux outils de corrélation sont les fossiles géochimiques et les rapports isotopiques (C, H, S...).
- COI (Carbone Organique Total) : teneur pondérale en carbone organique dans une roche sédimentaire, exprimée en & carbone organique / g roche.
- CPI (Carbon Preference Index) : expression de la distribution des n-alcanes, mesuré par le rapport pair/impair (Bray & Evans, 1961; Barker, 1979; Nishimura & Baker, 1986; Grimalt & Albaigès, 1987). Il peut être calculé de la manière suivante (Barker, 1979) :

 $CPI = 1/2 \left[\frac{\sum nC_{17-31}}{\sum nC_{16-30}} + \frac{\sum nC_{17-31}}{\sum nC_{18-32}} \right]$

La matière organique d'origine bactérienne a un CPI < 1 (majorité de n-alcanes pairs), la matière organique d'origine planctonique a un CPI \pm 1 (pas de préférence) et la matière organique d'origine terrestre a un CPI > 5 (majorité de n-alcanes impairs).

- Craquage : Processus de dégradation thermique de la matière organique, par rupture de liaisons C-C et production de molécules plus petites. La réaction de craquage est caractérisée par un ordre n=1.
- Cristallinité de l'Illite : échelle de diagenèse minérale basée sur la largeur à mi-hauteur du pic de l'Illite dans un diffractogramme RX et corrélée dans une certaine mesure à la réflectance de la vitrinite R_o (Kübler, 1967; Kübler & al., 1979; Teichmüller & al., 1979; Frey & al., 1980).

Cutine : composé lipidique constituant la protection des spores et des plantes.

- Diagenèse (Sensu stricto) : première étape de la dégradation thermique du kérogène suite à l'enfouissement : perte d'oxygène sous forme de CO₂ et d'H₂O, avec faible production d'hydrocarbures riches en biomarqueurs et de résines & asphaltènes (Zone Immature : $R_o < 0.5$ %).
- Diagenèse précoce : première étape de la diagenèse, qui conduit à la formation du kérogène : transformation des biopolymères synthétisés par la matière vivante (protéines, lipides, carbohydrates et lignine), en géopolymères insolubles.
- Energie d'Activation : énergie qui doit être absorbée par une molécule ou un complexe moléculaire, pour briser des liaisons chimiques et former de nouveaux produits (voir § IV.2.1.3).
- Enfouissement : enfoncement des couches géologiques provoquant une augmentation de leur pression et de leur température.

Facteur de Fréquence : voir § IV.2.1.4.

Fenêtre à Huile : zone de genèse principale d'huile dans le stade de la catagenèse (zone à huile : $0.5\% < R_o < 1.3\%$).

Flux géothermique : transfert calorifique à travers la croûte terrestre.

Fossiles géochimiques : voir Biomarqueurs.

Gradient géothermique : composante verticale de l'augmentation de température de la croûte terrestre, en °C/km.

Graisses : les graisses naturelles (réserves d'énergie des animaux, fruits et spores) sont des lipides constitués de mélanges de divers triglycérides. Elles peuvent s'hydrolyser en glycérines et en acides gras, qui sont des importants précurseurs des alcanes normaux.

Graphitisation : transformation du kérogène résiduel en carbone graphite marquant la fin de la catagenèse.

Hétéroatomiques (gaz) : gaz contenant les composés N, S et O (NH₄, H₂S, CO₂, CO...).

Hétéroatomiques (composés) : composés asphaltiques contenant N, S et O (résines, asphaltènes, asphaltes...).

Hydrocarbures (HC) : composés chimiques contenant uniquement l'hydrogène et le carbone (alcanes = HC saturés; alcènes = HC insaturés; Naphtènes = hydrocarbures cycliques; Aromatiques).

Huminite : macéral constituant le précurseur de la vitrinite.

Humique (matière organique) : matière organique sédimentaire dérivée de débris de plantes supérieures.

Huile : terme utilisé dans ce travail dans le sens de *bitume liquide ayant quitté la roche mère et s'étant accumulé dans un réservoir suite à la migration.*

Indice d'Hydrogène, d'Oxygène, Pétrolier : paramètres Rock-Eval (voir chapitre II)

IR : méthode d'analyse des kérogènes par spectroscopie infrarouge (Rouxhet & al., 1980).

- Immature : état d'évolution du kérogène correspondant à la zone de genèse de gaz biogénique, de CO_2 et de H_2O (stade de diagenèse, $R_o < 0.5$ %).
- Inerte (matière organique) : matière organique incapable de produire des hydrocarbures (potentiel pétrolier résiduel nul); elle appartient soit à une roche à kérogène de type IV, soit à une roche à kérogène très évoluée.

Inertinite : macéral constitué de débris de végétaux supérieurs encore reconnaissables.

- Isoprénoïdes : isomères d'alcanes ou d'alcènes présentant un branchement tous les cinq atomes de carbone. Les principaux sont le Pristane ipC₁₉ et le Phytane ipC₂₀. Ils dérivent directement des précurseurs biologiques, tels que la chaîne phytol de la chlorophylle et le Tocophérol (Barker, 1979; Larter & al., 1979; Illich, 1983; Goossens & al., 1984).
- Kérogène : selon la définition de Durand (1980) : matière organique insoluble dans les solvants organiques. Au sens large, ce terme représente aussi bien la matière organique disséminée des sédiments, que les lignites et les charbons. Au sens restreint, le plus généralement utilisé, il se rapporte uniquement à la matière organique disséminée. Les kérogènes sont classés en types I, II, III et IV dans un diagramme de Van Krevelen H/C-O/C. L'expression kérogène pur se rapporte au kérogène isolé de sa matrice minérale.

- Krevelen, van (diagramme) : diagramme mettant en relation les rapports atomiques *H/C* et *O/C* des kérogènes et permettant de les classer (Van Krevelen & Schuyer, 1957).
- Lacustre : environnement sédimentaire de lacs et de lagons marins très réducteurs et souvent salés, dans les quels la matière organique est constituée essentiellement d'algues, de spores et de pollens. Ce milieu est très favorable à la formation de roches à kérogène de type I.
- Lignine : composé organique synthétisé par les plantes uniquement et caractérisé par une structure aromatique complexe.
- Lignite : roche très riche en matière organique humique (> 50% poids); forme immature des charbons humiques.
- Lipides : substances organiques insolubles dans l'eau, mais extractibles par les solvants organiques, comprenant principalement les graisses, les cires, les pigments (polyterpènes), les phosphatoïdes et la cutine. Ils constituent la source majeure des hydrocarbures dans les kérogènes.
- Liptinite : macéral composé de débris d'algues et de spores.
- LOM (Level of Organic Metamorphism) : indicateur de maturation linéaire obtenu par l'équivalence aux paramètres optiques (PRV, TAI...) défini par Hood & al. (1975).
- Kacéral : constituant du kérogène reconnaissable en microscopie optique utilisant la lumière réfléchie (éléments figurés). Classés par indice de rélectance croissant, on trouve : la Liptinite, la Vitrinite et l'Inertinite. Il existe aussi l'Huminite et la Bituminite.
- Marin : milieu de sédimentation caractérisé par l'accumulation de matière organique essentiellement planctonique, dans des fonds marins réducteurs.
- Matières Volatiles (MV) : perte en poids par chauffage à 950°C d'un charbon en atmosphère inerte (indicateur de maturité).
- Naturation : transformation du kérogène suite aux effets combinés de l'enfouissement et du gradient géothermique qui provoque l'augmentation progressive de la température du sédiment (Philippi, 1965). Les étapes de cette transformation sont la diagenèse, la catagenèse, la métagenèse et le métamorphisme.
- Mature : état d'évolution thermique d'un kérogène correspondant à la zone de genèse maximale d'hydrocarbures, commençant par les hydrocarbures liquides (zone à huile; 0.5% < R_o < 1.3%) et se poursuivant par les hydrocarbures gazeux (zone à gaz humide; 1.3% < R_o < 2.0%).</p>
- Métagenèse : stade avancé de la maturation organique correspondant à la condensation du noyau carboné et à la production de méthane par craquage du kérogène résiduel et de l'huile déjà formée (zone à gaz sec; 2.0% < R_{o} < 4.0%).
- Métamorphisme : stade final de la maturation organique correspondant à la graphitisation du noyau carboné et à la destruction des gisements pétroliers (R_o > 4.0%).
- Migration : phénomène qui provoque le tansfert du pétrole et du gaz des roches mères vers les roches réservoirs. La migration se produit en deux étapes : la migration primaire (de la roche mère à la roche réservoir ou transporteuse) et la migration secondaire (dans la roche réservoir ou transporteuse, vers la structure piège). La migration tertaire ou dismigration est le mouvement d'hydrocarbures au travers de la couverture imperméable des structures pièges (Barker, 1977; Bray & Foster, 1980; Magara, 1980; Mc Auliffe, 1980; Palicauskas & Doménico, 1980; Leythaeuser & al., 1982; 1984, 1988; Mackenzie & al., 1983; Ungerer & al., 1983).

- Mixte (kérogène) : kérogène formé par le mélange de matières organiques d'origine marine et d'origine terrestre, dans un milieu de sédimentation marin mais proche d'apports continentaux. Ce kérogène est classifié par Mukhopadhyay & al. (1985) comme type IIb; il est de loin le type de kérogène le plus fréquemment rencontré dans les sédiments.
- NO : abréviation pour Matière Organique.
- MS (Spectrométrie de Masse) : technique d'analyse avec un spectromètre de masse, permettant d'identifier les composés chimiques par leur masse moléculaire et par la masse de fragments ionisés (les molécules sont vaporisées sous vide et ionisées par un bombardement d'électrons).
- Naphtène (Cycloalcane, Cycloparaffine) : hydrocarbure cyclique de formule générale C_nH_{2n} : Cyclopentane (C₅) et Cyclohexane (C₅).
- NSO : composés hétéroatomiques du bitume et des huiles, contenant les éléments N, S et O, et à structure générale aromatique (résines, asphaltènes et asphaltes).

Ordre de réaction : paramètre cinétique (voir § IV.2.1.2)

- Pétrole : terme général désignant la fraction liquide des composés formés au cours de la maturation du kérogène (synonyme de *Huile* et *Bitume*).
- Pigments : composés lipidiques complexes dont la maille dominante est l'unité isoprène; rencontrés généralement dans les plantes : *Chlorophylle* (Diterpène), *Carotène* (Tétraterpène)....
- Photosynthèse : réaction de transformation du dioxyde de carbone et de l'eau en glucuose et en oxygène, par l'action du rayonnement solaire sur les molécules de chlorophylle.

Phytane : alcane isoprénoïde à 20 atomes de carbone (ipC₂₀).

- Plancton : matière vivante marine microscopique constitué de Phytoplancton et de Zooplancton. Le phytoplancton est produit dès le Précambrien, mais sa composition évolue progressivement au cours du temps : algues bleues, algues vertes, acritarches, nannoplancton et diatomées. L'existence du zooplancton est directement liée à celle du phytoplancton, duquel il se nourrit : foraminifères, radiolières, ostracodes, conodontes...
- Plantes supérieures : les Gymnospermes sont les plantes dominantes jusqu'au Crétacé, ensuite ils sont supplantés par les Angiospermes.
- Porphyrines : composés organiques originaires de la matière vivante et dont la structure consiste en quatre cycles interconnectés. Le noyau de la chlorophylle est une porphyrine.
- PRV (Pouvoir Réflecteur de la vitrinite) : mesure de la réflectance de la vitrinite par l'indice R_o (%) : pouvoir réfléchissant d'une surface brillante. L'indice de réflectance R_o est actuellement considéré comme le meilleur indicateur du niveau de maturité organique (Vassoevich & al., 1970; Dow, 1977; Teichmüller, 1971; Alpern, 1980; Robert, 1980).

Pristane : alcane isoprénoïde à 19 atomes de carbone (ipC_{19}) .

Protéine : polymère à poids moléculaire élevé, hautement organisé et formé d'acides aminés individuels, reliés entre eux par des liaisons peptidiques. Le contenu en azote et en soufre de la matière vivante est concentré dans les protéines.

- PY-GC (Pyro-chromatographie en phase gazeuse) : technique d'analyse de la matière organique sédimentaire par couplage d'un chromatographe à un appareil de pyrolyse, permettant la séparation et l'analyse détaillée des composés dégagés par la matière organique lors de la pyrolyse (Martin, 1977; Larter & Douglas, 1980; Whelan & al., 1980; Gormly & Mukhopadhyay, 1983; Peters & al., 1983; Solli & al., 1984; Dror & al., 1985).
- Pyrolyse : analyse de la matière organique par dégradation thermique sous atmosphère inerte (voir chapitre II). Le principe général de la pyrolyse est celui de la dégradation thermique de molécules relativement grosses (kérogène ou résines & asphaltènes) en molécules plus petites, par craquage des liaisons C-C et en l'absence d'O₂. Alors que les grosses molécules sont difficilement analysables telles quelles, leurs produits de pyrolyse le sont plus facilement.
- Remaniée (matière organique) : matière organique sédimentaire provenant de l'érosion de couches stratigraphiques plus anciennes et incorporée dans des sédiments plus récents.
- Résines : composés NSO du bitume qui sont solubles dans le pentane et l'hexane mais précipités par le propane. Elles sont fréquemment associées aux asphaltènes.
- R_o (%) : Indice de réflectance de la vitrinite (voir PRV).

Roche (stade de préparation) : échantillon de roche sédimentaire à différents stades de préparation :

- *Roche Brute Broyée* : roche broyée, de manière à obtenir une poudre de granulométrie relativement homogène, inférieure à 60 mesh.
- Roche Traitée HC1 : roche broyée et décarbonatée par attaque à l'HCL 10%.
- Roche Extraite : roche broyée et extraite au dichlorométhane.
- Roche Extraite et Traitée : roche broyée, extraite au dichlorométhane et traitée à l'HCl.
- Roche à kérogène : roche sédimentaire contenant du kérogène (par opposition à *kérogène pur* : matière organique insoluble isolée de la matrice minérale).
- Rock Eval : méthode de pyrolyse normalisée pour l'analyse de la matière organique sédimentaire (voir chapitre II).
- Roche Mère : roche à kérogène qui a produit et expulsé du pétrole en quantité suffisante pour former des accumulations d'intérêt commercial.
- Roche Mère Active/Inactive : roche mère en cours de production / dont la production a été stoppée (remontée des couches suite à une érosion).
- Roche Mère Limitée : roche à kérogène qui a toutes les caractéristiques d'une roche mère, mais qui n'a pas la capacité de produire du pétrole en quantité suffisante.
- Roche Mère Potentielle : roche à kérogène qui a la capacité de produire du pétrole en quantité suffisante pour former des accumulations d'intérêt commercial, mais qui est encore à un stade trop immature ou dont le pétrole formé n'a pas été expulsé.
- Saturés : hydrocarbures dont les atomes de carbone ne sont reliés entre eux que par des liaisons simples (voir *alcanes*).
- Sous compaction : phénomène se produisant dans les formations en général argileuses, résultant d'un dépôt rapide et dont la compaction sédimentaire réalisée en un temps trop court, ne permet pas le départ normal de l'eau des pores au cours de l'enfouissement. Le déséquilibre qui en résulte réduit les échanges avec les autres formations et elles se trouvent soumises à des pressions excessives. Les séries sous-compactées constituent des barrières thermiques. La sous-compaction des séries de roches mères est défavorable à l'expulsion du pétrole formé suite à l'enfouissement.

Tannins : composés ligno-cellulosiques des écorces et racines végétales.

- Tectonique de socle : déformations dans les séries sédimentaires surmontant le socle, induites par les mouvements du socle (formations de grabens et de horsts dans un environnement de rift). Ces déformations sont généralement synsédimentaires et contrôlent directement le développement des fosses de sédimentation.
- Tectonique salifère : déformations dans les séries sédimentaires surmontant une couche de sel, induites par les mouvements du sel provoqués suite à des différences importantes de densité et de viscosité par rapport aux séries encaissantes.
- TGA (Analyse Thermogravimétrique) : méthode d'analyse thermique de la matière organique, par chauffage d'un échantillon sous atmosphère inerte et mesure de la perte en poids (Durand-Souron, 1980).
- TTI (Indice Temps-Température) : indice d'évolution thermique qui représente les effets du temps et de la température, sur la maturation de la matière organique (Lopatin, 1971).

Vitrinite : macéral constitué de débris de végétaux supérieurs entièrement gélifiés.

-+000+-

ANNEXE III

ANNEXE III: DONNEES DE BASE SE RAPPORTANT AU Chapitre III

<u>Annexe III.1</u>
Listing des données et résultats de pyrolyse comparative de l'échantillon AAB 2487.
<u>Annexe III.2</u>
Données d'analyse du bitume par pyrolyse comparative et chromato- graphie MPLC.
<u>Annexe III.3</u>
Données des analyses de reproductibilité au Rock Eval.
<u>Annexe III.4</u>
Données de pyrolyse pour l'étude des anomalies en CO2 organique.
<u>Annexe III.5</u>

Résultats Rock Eval d'échantillons vieillis par pyrolyse sèche.

-+000+-

ANNEXE III.1.1

ANNEXE III.1. LISTING DES DONNEES ET RESULTATS DE PYROLYSE COMPARATIVE DE L'ECHANTILLON AAB 2487

ANNEXE III.1.1. DONNEES EXPERIMENTALES ET COURBE DE PYROLYSE

		NOMBRE 1	DE COUPS		VALEURS	S NORMAL	ISEES ()	2)		
N) 202	۲': 	R Brute	R Extr	Blanc	R Brute	R Extr	Bitume	51+51°	52'	е 1 2 3 4 5 X HC / 5 °С
 :	258	3	1	e	.81	£	.81	.01	8	4
2	255	175	15	8	.67	. 8o	.62	.62	0	******
3	268.1	611	32	8	3.12	.12	3	3	6	~** **********************************
4	265.1	1163	34	6	4.47	.13	4.34	4.34	8	****************
5	276.1	911	28	6	3.5	.11	3.4	3.4	8	· · · · · · · · · · · · · · · · · · ·
6 7	2/3,2	614	15	8	2.30		2.29	2.29	8	*****
	206.2	102	15	C A	1.00	.66	1.0	1.0	к о	*************
ç	292.3	247	6	P	1.03	87	1.22	1.24	0	
12	295.3	232	ĥ	8	.86	.83	.85	.85	a	*******
- 11	382.4	285	9	ē	.75	.03	.76	.76	ē	
12	385.4	-193	9	e	.74	.83	.71	.71	8	***
13	318.4	183	18	8	.7	.84	.67	.67	8	+++++
14	315.5	178	13	£	.68	.25	.63	.63	e	******
15	322.5	175	13	6	.67	. 85	.62	.62	e	*
lė	325.5	173	14	8	.67	.05	.61	.61	8	******
17	332.5	17+	16	6	.67	.05	.61	.61	8	******* 51 = (*) * Pyrolysat du Kéroşène
16	335.5	175	19	8	.68	.87	.61	.61	6	******* S2'= (-) : Pyrolysat des Résines & Asphaltènes
29	346.0	177	<u>Z:</u>	e n	.67	-105	•0	.6	8	Si'= (#) : Hydrocarbures libres ou adsortés, lourds (C >= 25
- 21	752.7	104	27	C 0	. / 1	.11	.0	.37	.0:	Si = (+) : Hydrocarbures libres ou adsorbés, légers (C <= 25
- 22	355.7	196	A:	e p	-75	14	.01	.57	.05	S1+51'+52' = BITUME
23	362.8	207	58	ē	.8	15	.0	53	.00 89	
24	365.8	223	58	â	. Bó	.22	.63	.51	. 13	*****
25	372.8	235	72	2	.92	.27	. 65	.49	.16	
26	375,9	257	8á	8	.99	.33	. 66	.47	.19	****
27	382.9	262	10c	8	1.88	.4	.68	.45	.23	#### ≠ + + + ++
26	385.9	3:3	132	8	1.2	.5	.71	.43	.27	****
29	391	346	161	e	1.34	.62	.72	.42	.31	↓≠ # ≠↓↓↓↓↓
38	396	395	176	Ø	1.52	.75	.77	.4	.37	#####****
- 31	401.1	451	248	8	1.73	.92	.82	.38	. 44	
32	486.1	519	297	5	2	1.14	.66	.36	.5	\$\$#\$\$}\$\$\$\$\$\$
32	411.1	663	364	E	2.32	1.39	.93	.34	.59	\$\$\$\$
34	416.2	722	442	6	2.7	1.68	1.82	.32	.69	£##
30	421.2	810	23C (20	6	3.14	2.62	1.68	 ~	./6	¥#;
30	47:7	10.75	715	с а	3.33	2.41	1.14	.28	.86 D/	
3/	434.3	1177	624	ю А	J. 70	1 00	1.21	•40 26	1 87	
39	441.3	1229	840	ē	4.65	3.33	1.32	.23	1.1	
40	445.4	1225	925	a	4.71	3.46	1.25	.21	1.04	zi
- 4 :	451,4	1193	921	6	4.59	3.45	1.13	. 19	.95	
42	450.4	1110	B 61	Ð	4.27	3.3	.97	.17	.8	L#+++++++++++++++++++++++++++++++++
43	461.5	995	7E:	e	3.83	2.99	.84	.15	.69	{} <u>}</u>
44	460.5	859	675	e	3.3	2.6	.7	.13	.57	#
45	47:.5	717	574	£	2.76	2.2	.56	. 11	.45	\$********************************
46	475.0	592	471	5	2.27	1.8	.47	.89	. 37	\$= > +++ * +++++++++++++++++++++++++++++++
47	461.6	467	375	5	1.8	1.43	.3ċ	.65	.29	\$ + **********
45	486.0	305	293	e	1.4	1.12	.28	.06	.Z2	1#++#*********
47	471.1	463	175	6	1.07	, BC	.23	.04	.19	***
- 50	50./	117	172	р р	+0J 47	.6/	.1/	. U.	12	
57	52- 5	171	10-	2	.47	ר. יזי	P9	a .	85	-++++
53	5:1.ē	51	77	2	. 35	.3	-Bé	ē	.00	
54	512.9	73	65	ē	.28	.25	.83	e	.83	***
55	521.5	63	56	6	. 24	.23	.e:	e	.01	1 ++
5c	526.9	59	55	e	.23	.21	.82	8	.02	**
5-	532	55	53	e	.21	.2	.0:	6	.8:	fat .
59	537	54	53	6	.21	.2	B	8	8	**
59	5-2	52	52	e	.2	.2	e	e	8	**
62	547.1	53	51	5	.2	.2	.01	8	.0:	**
	354. Î	23	52	2	.2	.15	.0:	8	.0:	
	33.11 541 A	02 50	42	ί α	.2	.18	- 62	۲ ۵	.62	**
63	301,2 547-0	36 45		ι Γ	.15	.18	.02	C O	.82	**
¥ء تب	977 A	40 40	45	c p	.18	.1/	-61 -61	10 0	.61	**
رن خم	577 1	45 45	42	2	.15	- 10	. C.	e R	.0.2	**
67	582.7	39	35	P	. 15	13	. D.2	Å	802	
68 68	587.3	35	3:	2	.13	.12	.82	8	.82	
6=	592.4	32	27	z	.12		. 81	ē	. D 1	Ľ
78	597.4	9	6	2	0	e	B	ē	6	l l
-7:	621.5	e	6	5	e	6	8	e	8	4
****	.)	76 205	17725		192		********	77 5		=
ų, 4	ч. К		10072	ſ	100	31.24	45.46	د .دد	14.75	

LEGENDE DE L'ANNEXE III.1.1 - Listing des données et résultats de pyrolyse comparative de l'échantillon AAB 2487 du Miocène d'Angola (Analyse de 100mg de la roche brute et 100mg de la roche extraite). *Nombre de coups*: enregistrement numérique de la courbe de pyrolyse de la roche brute (R Brute) et de la roche extraite (R Extr), par "tranches" de 5.035 °C. *Valeurs Normalisées*: valeurs normalisées en pourcent, par rapport au total du nombre de coups de la roche brute. La courbe du bitume est construite par différence entre les valeurs normalisées de la roche brute et de la roche extraite. La température de séparation entre les fractions S1 et S1' (345.7°C) correspond au point bas de la vallée entre les deux pics de la courbe du bitume. A partir de ce point, une ligne de base est tracée jusqu'à la fin de la courbe du bitume, pour séparer le pic S2' de la fraction S1'.

LEGENDE DE L'ANNEXE III.1.2 - Tableau de résultats de pyrolyse comparative de l'échantillon AAB 2487 du Miocène d'Angola et courbe de pyrolyse comparative normalisée. *MG/G R*: teneurs en hydrocarbures (mg/g roche); *TOC*: Carbone Organique Total (%), *TMax*: température au sommet du pic S2, *IH*: Indice d'Hydrogène (mg HC/g Corg.), Indices de Production.

A. TYPE Ia (Green River Shale)

ROCHES	mg/groche	mg/groche	mg / g roche	mg/groche	8	°C mg/g Corg.
KEROGENE	Extr. HC _{sol}	Sa+Ar Re+As	S1 S1' S2'	\$1+\$1' \$1'+\$2' IQ	ł COT	TMax IH
AAD 0100 AAD 0200 AAD 0300 AAD 0400 AAD 0500 AAD 0500 AAD 0600 AAD 0700 AAD 0800	13.9512.0516.0311.6223.0815.7434.1721.6025.1114.3625.3718.3513.6810.3219.0316.49	2.72 11.23 2.95 13.41 3.78 19.47 5.35 27.27 5.07 21.48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.4010.640.71.4810.1413.3412.4015.1116.4918.246.1218.7011.990.74.925.4018.929.860.7	22 4.4 9.9 13.6 16.7 25.1 13.5 21.1 74 5.9	7 432 803 5 442 820 4 443 771 2 441 792 9 450 966 5 432 892 1 499 878 0 444 908

B. TYPE Ib (Crétacé d'Angola)

ROCHES	mg/g roche	mg / g roche	mg/groche	mg/g roche	≵ °C mg/g Corg.
KEROGENE	Extr. HC _{∞ol}	Sa+Ar Re+As	S1 S1' S2'	S1+S1' S1'+S2' IQH	COT TMax IH
AAA 2019 AAA 2023 AAF 3128 AAG 2332	11.63 8.67 12.60 10.45 11.64 13.21 5.38 3.03	4.18 7.45 6.02 6.58 4.50 7.14	5.480.682.517.501.291.665.100.957.161.2501.78	6.163.190.898.792.950.856.058.110.841.251.781	6.1543786611.0743895811.004406557.40434752

LEGENDE DE L'ANNEXE III.2 - Résultats des analyses de la fraction organique soluble de roches à kérogène, de charbons et de roches réservoirs, par pyrolyse Rock Eval comparative et par extraction au dichlorométhane suivie de séparation MPLC.

- <u>Données de la MPLC</u>: *Extr.* = teneur en matière organique extraite, *Sa+Ar* = teneurs en hydrocarbures (saturés + aromatiques), *Re+As* = teneurs en composés NSO (résines + asphaltènes).

- Données de la pyrolyse comparative: Teneurs en composés SI (hydrocarbures légers C_{1-25}), SI' (hydrocarbures lourds C_{20-40}), S2' (résines & asphaltènes). Indice IQH (S1[S1+S1']): proportion d'hydrocarbures légers par rapport à l'ensemble des hydrocarbures, teneur en COI (Carbone Organique Total), température IMax du kérogène (au sommet du pic S2) et Indice d'Hydrogène IH du kérogène (mg HC/g Corg.).

ROCHES	ROCHES mg/groche		mg/groche		m9	mg/groche			mg/groche		8	°C	mg/g Corg.
KEROGENE	Extr.	HCsol	Sa+Ar	Re+As	\$1	\$1'	\$2'	\$1+\$1'	\$1'+\$2'	IQH	COT	TMax	IH
AAA 2015	1.54	1.54	0.80	0.74	0.96	0.23	0.36	1.19	0.59	0.81	0.39	436	4 18 337
AAA 2870	3.20	3.20	2.01	1.19	1.69	0.47	1.04	2.16	1.51	0.78	1.78	441	437
AAF 3126 AAF 3130	25.11 29.25	15.50 21.19	11.60	13.51	9.32 15.24	12.02 2.74	3.48 3.21	12.02 17.98	6.18 5.95	0.78 0.85	1.36 0.60	433 432	528 4 47
AAG 2024	0.39	1.21			0.34	0.48 0.16	0.39	0.82	0.87	0.41	0.59	439 430	548 558
AAG 2051	1.92	1.40	F4	< 75	0.22	0.32	0.86	0.54	1.18	0.41	2.27	440	533
FEC 4892	9.29 4.53	9.29 3.17	2.54	5.75 3.34	U.40 0.73	U.23 O	8.62	0.63	8.85 2.44	U.64 1	9.29	420 419	556 589
FEC 6073	3.52	3.82 0.47	1.06	2.46	0.46	0 N	3.36 0	0.46	3.36 N	1	7.86	423 426	620 619
KIM 1070	4.65	6.16	1.91	3.46	0.23	0.17	5.76	0.40	5.93	0.57	12.45	415	664
KIM 2050		4. 74			1.59	0.91	3.01	1.91	3.15	0.52	4.72	422	404

C. TYPE IIa (Crétacé d'Angola et du Bas Zaïre, Toarcien du Bassin de Paris et Kimméridgien d'Angleterre)

D. TYPE IIb (Miocène d'Angola)

ROCHES mg/groche		mg/groche		n 9	/ g ro	che	mg /	g roche		ş	°C 1	19/9 Corg.	
KEROGENE	Extr.	HC _{sol}	Sa+Ar	Re+As	\$1	S1'	\$2'	\$1+\$1'	\$1'+\$2'	IQH	COT	TMax	IH
AAA 1708	8.55	8.68			6.27	0.51	1.90	0.78	2.41	0.93	3.84	425	380
AAA 1750	11.92	11.79			8.07	1.00	2.72	9.07	3.72	0.90	5.01	427	426
AAA 2001	0.40	0.43			0.14	0	0.29	0.14	0.29	0.55	0.28	438	363
AAB 0505	0.98	0.23	0.19	0.79	0.03	0	0.20	0.03	0.20	1	2.82	423	319
AAB 0801	1.96	2.65	0.22	1.68	0.17	0.14	2.24	0.31	2.48	0.55	2.94	425	360
AAB 0802	2.57	2.73			0.20	0.45	2.08	0.65	2.53	0.31	3.55	425	296
AAB 1073		2.23			0.06	0	2.17	0.06	2.17	1	3.33	425	309
AAB 1075	2.45	1.17	0.28	2.17	0.19	0.10	1.48	0.29	1.58	0.66	3.19	425	261
AAB 1401	2.65	· 2.15	0.70	1.95	0.53	0.22	1.40	0.75	1.62	0.71	2.85	426	486
AAB 1402	3.10	2.61			0.26	0.59	1.76	0.85	2.35	0.31	3.25	429	354
AAB 1692	1.79	1.22	0.47	1.32	0.15	0.26	0.81	0.41	1.07	0.36	2.54	430	344
AAB 1811	3.63	3.40	1.07	2.55	1.13	0.68	1.59	1.81	2.27	0.62	2.22	432	372
AAB 1815	3.42	2.16			0.49	0.73	0.94	0.22	1.67	0.40	2.22	434	328
AAB 2143	3.57	2.74	1.32	2.25	0.73	0.47	1.54	1.20	2.01	0.62	1.86	436	269
AAB 2143	3.52	2.89			0.66	0.52	1.71	1.18	2.23	0.56	2.08	438	265
AAB 2483	5.62	4.53			1.62	0.84	2.07	2.46	2.91	0.66	2.53	442	210
AAB 2487	5.47	4.85	2.15	3.32	1.71	0.99	2.15	2.70	3.14	0.65	2.29	439	199
AAB 2770	1.19	0.73			0.34	0.04	0.03	0.38	0.07	0.93	0.44	455	275
AAC 0697	2.15	1.08			0	0	1.08	0	1.08		3.05	427	44 6
AAC 0699	1.73	0.22			0.15	0.06	0.01	0.21	0.07	0.71	3.05	425	361
AAC 0701	1.43	0. 80	0.79	0.64	0.79	0	0.01	0.79	0.01	1	3.11	431	306
AAC 1032	0.67	0.27			0.01	0	0.26	0.01	0.26	1	0.26	433	
AAC 1393	1.77	1.23			0.53	0.14	0.56	0.67	0.70	0.79	1.62	4 29	354
AAC 1404	23.27	20.64	11.70	11.57	12.48	4.02	4.14	16.50	8.16	0.76	2.99	429	354
AAG 2005		0.65			0.10	0.12	0.43	0.22	0.55	0.40	2.90	433	308
AAG 2021		0.28	-		0.01	0.01	0.04	0.02	0.05	0.50	0.82	439	322
AAG 2178		0.70			0.05	0.15	0.50	0.20	0.65	0.58	1.46	439	366
ARF 1913	1.67	0.42			0.25	0	0.48	0.25	0.48	1	1.98	433	300
E. TYPE III (Lignites et charbons)

ROCHES	mg/groche m		mg / g	mg / g roche		/ g r	oche	mg /	/ g roche		ş	°C i	ng/g Corg.
KEROGENE	Extr.	HC₅₀ı	Sa+Ar	Re+As	\$1	\$1'	\$2'	\$1+\$1'	\$1'+\$2'	IQH	COT	TMax	IH
AAS 5100 AAS 5200 AAS 4370 AAS 3470 AAS 2968 AAS 2505 AAS 2063 AAS 1425 AAS 0772	16.27 20.03 29.31 17.14 5.70 4.80 2.71 1.76 1.49	1.06 7.51 5.47 13.19 21.72 30.89 24.60 20.56 15.99	3.16 7.91 6.04 0.60	16.86 21.40 11.10 5.10	0.16 1.59 0.59 0.53 1.59 3.89 4.14 5.15 15.99	0 0 0 0 0 0 0 0 0	0.90 5.92 4.88 12.66 20.13 27.00 20.46 15.41 0	0.16 1.59 0.59 0.53 1.59 3.89 4.14 5.15 15.99	0.90 5.92 4.88 12.66 20.13 27.00 20.46 15.41 0		54.60 55.00 79.14 76.57 88.04 88.37 89.12 91.77	395 398 441 439 451 466 479 500 599	130 124 175 212 127 107 62 14

F. ROCHES RESERVOIRS (Bas - Zaïre)

ROCHES	mg / g	roche	mg / g	roche	ng	/ 9 ro	che	ng /	g roche		8	°C mg	/g Corg.
VOIRS	Extr.	HC₅₀ı	Sa+Ar	Re+As	\$1	\$1'	\$2'	\$1+\$1'	\$1'+\$2'	IQH	COT	TMax	IH
AAC 0649 AKA 1162 AKA 1166 AKA 1171 AKA 1182 AKA 1186 AKA 1186 AKA 1191 ALA 1272 ALA 1273 ALA 1274 ALA 1296 ASS 1000	7.58 14.20 6.59 19.25 21.91 18.20 0.25 21.72 19.11 10.73 15.83 174.48	6.38 13.19 6.21 17.38 19.66 21.70 0.05 18.30 16.91 8.64 13.33 64.96	3.06 9.43 3.68 13.39 15.96 10.31 13.60 10.17 7.32 10.07 37.46	4.52 4.77 2.91 5.87 5.95 7.90 8.12 8.94 3.41 5.67 137.02	3.00 9.29 4.04 12.49 14.07 14.75 0.02 11.99 11.38 5.76 9.14 41.81	1.30 1.65 0.77 2.16 2.51 3.14 0 2.97 2.33 1.22 1.76 39.48	2.08 2.26 1.40 2.73 3.09 3.81 0.03 3.34 3.21 1.65 2.40 82.67	4.30 10.94 4.81 14.65 16.58 17.89 0.02 14.96 13.71 6.99 10.90 81.29	3.38 3.91 2.17 4.89 5.60 6.95 0.03 6.31 5.54 2.87 4.16 122.15	0.70 0.85 0.84 0.85 0.82 0.67 0.80 0.83 0.82 0.84 0.51			

ANNEXE III.3. DONNEES DES ANALYSES DE REPRODUCTIBILITE AU ROCK EVAL

<u>AAB 0505</u> Date Analyse	TMax (°C)	<u>mg/g</u> S1 (HC)	<u>roche</u> S2 (HC)	Indice Pétrolier IP
18-01-85 22-01-85 23-01-85 24-01-85 25-01-85 28-01-85 29-01-85 31-01-85 01-02-85 05-02-85 22-02-85	428 429 428 427 428 427 428 428 426 428 426 428 427 428	0.16 0.20 0.23 0.18 0.18 0.14 0.18 0.17 0.07 0.15 0.18	8.91 8.88 8.86 8.74 8.72 6.97 8.61 8.81 8.89 8.51 8.68	0.020 0.020 0.020 0.020 0.020 0.020 0.018 0.022 0.025 0.017 0.019 0.001
Nombre N Moy. X Ec.t. s Ec.t. s%	11 428 0.8 0.2	11 0.17 0.04 24.1	11 8.60 0.55 6.45	11 0.018 0.006 33.32

ANNEXE III.3.1. REPRODUCTIBILITE DES RESULTATS ROCK EVAL EN CYCLE I

LEGENDE DES ANNEXES III.3.1 & 2 - Résultats des analyses Rock Eval d'échantillons témoins. l'échantillon <u>AAB 0505</u> a été analysé 11 fois avec le cycle I (défini au tabl.II.1). L'échantillon <u>REF 1913</u> a été analysé 52 fois à l'aide du Rock Eval II équipé du module pour la détermination du COI, avec le cycle II (défini au tabl.II.1). Données de pyrolyse (méthode classique): *TMax* (température au sommet du pic S2), *COI* (Carbone Organique Total), *S1* (hydrocarbures thermovaporisables), *S2* (hydrocarbures pyrolysables), *S3* (CO2 pyrolysable), *IP* (Indice de Production S1/[S1+S2]), *IH* (Indice d'Hydrogène) et *IO* (Indice d'0xygène).

Paramètres statistiques: Moyenne X des valeurs, écart type s et écart type relatif s%.

ANNEXE III.3.2

ANNEXE III.3.2.	REPRODUCTIBILITE DES RESULTATS ROCK EVAL EN CYCLE II

<u>REF 1913</u> Date	TMax (*C)	COT	S1	g/g rocl \$2 (HC)	<u>ne</u> . \$3	Indice Pétrolier	■g/g Corg. IH IO
12-07-85 15-07-85 16-07-85 22-07-85	433 433 433 435	1.96 1.96 2.10	0.39 0.38 0.39 0.57	7.13 6.46 7.13 6.77	0.78 0.69 0.78 0.78 0.78	0.052 0.056 0.058 0.078	364 39 364 39 364 39 322 37
22-07-85 23-07-85 30-07-85 31-07-85 01-08-85 01-08-85 05-08-85 06-08-85	428 436 432 434 434 434 435 433	2.11	0.56 0.56 0.69 0.68 0.50 0.49 0.64	6.96 6.64 7.05 6.72 7.61 6.77 6.63 6.93	0.63 0.81 0.61 0.66 0.75 0.83 0.71		37
07-08-85 08-08-85 09-08-85 13-08-85 14-08-85 19-08-85 21-08-85 22-08-85 22-08-85	432 433 434 433 433 433 434 435 426 428	2.07 2.02 2.10 2.09 2.07 2.18	0.60 0.71 0.50 0.56 0.47 0.51 0.59 0.61	6.93 7.02 6.51 6.77 6.74 7.04 7.18 7.17 6.89	0.85 0.81 0.86 0.81 0.87 0.85 0.81 1.50 7.21	0.077 0.063 0.066 0.076 0.081	38 334 43 335 40 343 38 346 72 316 83
26-08-85 28-08-85 30-08-85 03-09-85 09-09-85	434 434 435 435 432 432	2.12 2.08 2.09 2.01 2.08 2.08	0.61 0.64	6.85 7.13	0.75 0.73 0.55 0.70 0.76 0.89	0.082	35 329 35 26 34 343 36 336 43
11-09-85 16-09-85 17-09-85 18-09-85 22-09-85 23-09-85 01-10-85 04-10-85 14-10-85 16-10-85	433 433 433 426 433 433 433 436 432 434 431 434	2.08 2.10 2.10 2.09 2.15 2.10 2.11 2.05 2.13 2.07 2.04	0.59 0.62 0.65 0.69 0.67 0.62	7.14 6.64 7.00 6.82 7.77 6.89	0.75 0.75 0.76 0.94 0.78 0.82 0.82 0.82 0.87 0.86 0.76 0.66	0.076 0.086 0.085 0.092 0.079 0.083	343 36 316 35 333 36 326 44 361 36 328 39 38 42 38 36 32 38 32 38 32 38 32 38 32 38 32 38 32 38 32 32
16-10-85 18-10-85 21-10-85 22-10-85 23-10-85 23-10-85 23-10-85 09-12-85 14-01-86 15-01-86 15-01-86 17-01-86 20-01-86 20-01-86 20-02-86	434 435 439 434 435 435 432 433 432 433 433 433 433 433	2.04 2.10 2.13 2.25 2.12 2.16 2.08 2.08 2.08 2.08 2.08 2.08 2.13 2.13 2.13 2.04			0.76 0.89 0.79 1.54 1.20 1.10 0.73 0.79 0.78 0.77 0.75 0.81 0.81 0.74		35 42 37 68 56 55 35 38 37 37 36 38 38 38 38 38 38
Nombre N Moy. X Ec.t. s Ec.r. st	52 433 2.2 0.5	41 2.09 0.05 4.0	32 0.58 0.09 15.5	32 6.92 0.30 4.3	41 0.84 0.05 27.2	32 0.078 0.010 13.45	17 41 336 41 13.5 11 4.0 27.0

ANNEXE III.3.3. REPRODUCTIBILITE DES RESULTATS DE PYROLYSE COMPARATIVE

A: Données générales

AAB 1075	COT (%)			TMax	(°C)	IK (mg	HC/Corg.)	IO (mg CO _z /Corg.)
Essai n°.	Rbr	Rex	Re+As	Rex	Re+As	Rex	Re+As	Rtr
1 2 3 4 5 6	3.16 3.18 3.22 3.19 3.20 3.22	2.92 2.94 2.99 2.96 2.92 2.90	0.02 0.02 0.02 0.02 0.02 0.02 0.03	427 423 424 425 427 425	406 446 441 441 431 421	296 298 298 299 306 290	404 321 629 725 511 685	56 62 52 55 53 49
Moy. X Ec.t. s Ec.r. s%	3.19 0.02 0.73	2.94 0.03 1.11	0.02 0.00 16.94	425 1.6 0.4	431 15.2 3.5	298 5.2 1.7	546 161.4 29.6	54 4.4 8.1

<u>AAB 2487</u>		COT (%	;)	TMax	(°C)	IH (mg	HC/Corg.)	IO (mg CO₂/Corg.)
Essai n°	R _{br}	Rex	Re+As	R _{ex}	Re+As	R _{ex}	Re+As	R _{tr}
1	2.63	2.17	0.21	444	441	228	641	34
2	2.60	2.25	0.10	444	441	212	1136	35
3	2.65	2.21	0.19	445	436	213	752	37
4	2.62	2.18	0.18	444	441	216	758	38
5	2.61	2.10	0.26	443	441	233	468	36
6	2.67	2.19	0.23	444	436	206	616	38
Moy. X	2.63	2.18	0.19	444	439	218	728	36
Ec.t. s	0.03	0.05	0.05	0.6	2.6	10.3	226.1	1.6
Ec.r. s%	0.99	2.27	28.04	0.1	0.6	4.7	31.0	4.5

- LEGENDE DES ANNEXES III.3.3 Résultats des analyses en pyrolyse comparative de 4 séries de 6 échantillons. Les échantillons de chaque série ont été prélevés sur une même carotte de forage (sondage AAB, Miocène d'Angola et sondage AAF, Crétacé du Bas Zaïre)
 - A: Données générales: Carbone Organique Total COI, température IMax, Indices d'Hydrogène IH et d'Oxygène IO, concernant les roches brutes (R_{br}), les roches extraites (R_{ex}) et les résines & asphaltènes (Re+As).
 - B: Potentiels pétroliers S1 (hydrocarbures légers C1-25), S1' (hydrocarbures lourds C20-40), S2' (résines & asphaltènes), S2 (kérogène). Poids de bitume (mg/g roche) mesuré par pyrolyse comparative (HCs01) et poids obtenu après extraction au dichlorométhane (Extr). Indices de production définis en pyrolyse comparative.

Paramètres statistiques: Moyenne \overline{X} des valeurs, écart type s et écart type relatif s[‡].

<u>AAF 3126</u>	COT (%)			TMax	(°C)	IH (mg H	iC/Corg.)	IO (mg CO ₂ /Corg.)
Essai n°	R _{br}	Rex	Re+As	R.,×	Re+As	R _{ex}	Re+As	Rtr
1 2 3 4 5 6	2.80 2.87 2.84 2.85 2.82 2.90	1.33 1.36 1.38 1.32 1.33 1.33	0.44 0.46 0.43 0.50 0.40 0.50	438 436 438 427 437 436	421 446 426 426 421 421	592 590 541 593 572 588	715 628 817 598 628 607	15 14 14 28 26
Moy. Ⅹ Ec.t. s Ec.r. s%	2.85 0.04 1.25	1.34 0.02 1.73	0.47 0.03 6.40	437 0.9 0.2	427 9.7 2.3	579 20.3 3.5	665 85.1 12.8	19 7.0 36.0

<u>AAF 3128</u>	COT (%)			TMax	(°C)	IH (mg	HC/Corg.)	IO (mg CO _z /Corg.)
Essai n°	Ror	R _{ex}	Re+As	Rex	Re+As	R _{•×}	Re+As	R _{tr}
1 2 3 4 5 6	12.05 12.23 12.28 12.10 12.09 11.51	11.67 10.95 11.29 11.42 11.32 10.97	0 0.06 0.04 0 0.01	443 441 441 442 443 441	426 416 371 411 441 386	685 739 727 713 709 697	918 1189	3 3 3 3 3 3 3
Moy. Ⅹ Ec.t. s Ec.r. s%	12.04 0.28 2.29	11.27 0.27 2.44	0.04 0.02 69.44	442 1.0 0.2	408 25.8 6.3	712 19.6 2.8	1053 191.6 18.2	3 0 0

B: Potentiels Pétroliers et Indices de Production

AAB 1075		mg HC/g	roche		Bitume	total	Indices de Production						
Essai n°	\$2	\$2 '	S1'	\$1	HC _{sol}	Extr	IKB	IKA	IAH	IQH	IP	Bit.R.	
1	8.64	0.76	0.14	0.48	1.39	2.86	0.14	0.08	0.45	0.77	0.05	44.0	
2	8.76	0.62	0.16	0.40	1.19	2.79	0.12	0.07	0.47	0.71	0.04	37.4	
3	8.92	1.12	0.20	0.42	1.73	2.88	0.16	0.11	0.36	0.68	0.04	53.8	
4	8.85	1.26	0.21	0.46	1.92	2.92	0.18	0.12	0.35	0.69	0.04	60.2	
5	8.93	-1.16	0.23	0.40	1:78	3.01	0.17	0.11	0.35	0.63	0.04	77.0	
6	8.40	1.80	0.23	0.45	2.48	2.99	0.23	0.18	0.27	0.66	0.04	77.0	
Moy. X	8.75	1.12	0.19	0.43	1.75	2.91	0.17	0.11	0.37	0.69	0.04	54.7	
Ec.t. s	0.20	0.41	0.04	0.03	0.45	0.08	0.04	0.04	0.07	0.05	0.00	13.7	
Ec.r. s%	2.32	37.01	19.12	7.66	25.66	2.85	22.66	34.64	19.65	6.92	9.80	25.1	

<u>AAB 2487</u>	1	mg HC/g roche				total	Indices de Production						
Essai n°	\$2	\$2'	\$1'	S1	₩C₅₀ı	Extr	IKB	IKA	IAH	IQH	IP	Bit.R.	
1	4.95	1.35	0.77	2.20	4.32	5.48	0.47	0.21	0.69	0.74	0.24	164.3	
2	4.78	1.19	0.79	2.13	4.11	5.46	0.46	0.20	0.71	0.73	0.24	158.1	
3	4.71	1.42	0.94	2.05	4.40	5.69	0.48	0.23	0.68	0.69	0.23	166.0	
4	4.71	1.38	0.86	-2.21	4.44	5.44	0.49	0.23	0.69	0.72	0.24	169.5	
5	4.90	1.23	0.74	2.20	4.17	5.38	0.46	0.20	0.71	0.75	0.24	159.8	
· 6	4.52	1.41	0.81	2.18	4.40	5.68	0.49	0.24	0.68	0.73	0.24	164.8	
Moy. X	4.76	1.33	0.82	2.16	4.31	5.52	0.47	0.22	0.69	0.73	0.24	163.7	
Ec.t. s	0.15	0.10	0.07	0.06	0.14	0.13	0.01	0.02	0.01	0.02	0.00	4.2	
Ec.r. s%	3.24	7.29	8.79	2.86	3.16	2.37	2.90	7.89	1.97	2.84	1.71	2.5	

<u>AAF 3126</u>	i	ng HC/g	roche		Bitume	total	Indices de Production						
Essai n°	S2	\$2'	\$1'	S1	HC.so1	Extr	IKB	IKA	IAH	IQH	IP	Bit.R.	
1 2 3 4 5 6	7.87 8.02 7.46 7.82 7.83 7.61	3.17 2.87 3.50 3.05 2.95 3.01	2.07 2.21 1.96 2.18 2.24 2.23	10.15 10.32 10.31 10.51 10.01 9.81	15.38 15.40 15.78 15.75 15.21 15.05	15.64 17.46 16.24 15.98 16.38 16.54	0.66 0.66 0.68 0.67 0.66 0.66	0.29 0.26 0.32 0.28 0.27 0.28	0.79 0.81 0.78 0.81 0.81 0.81 0.80	0.83 0.82 0.84 0.83 0.82 0.81	0.44 0.44 0.45 0.43 0.43	549.3 536.6 555.6 543.1 533.7 533.7	
Moy. X Ec.t. s Ec.r. s%	7.77 0.20 2.58	3.09 0.22 7.24	2.15 0.11 5.16	10.18 0.25 2.45	15.43 0.29 1.88	16.37 0.62 3.78	0.66 0.01 1.26	0.28 0.02 7.29	0.80 0.01 1.58	0.82 0.01 1.27	0.44 0.01 1.72	542.0 9.0 1.7	

<u>AAF 3128</u>		mg HC/g roche			Bitume	total	Indices de Production					
Essai n°	S2	\$2'	S1'	\$1	HC₅₀ı	Extr	IKB	IKA	IAH	IQH	IP	Bit.R.
1 2 3 4 5 6	79.99 80.95 82.11 81.41 80.27	5.85 5.85 4.94 4.21 4.74	1.45 0.97 0.36 1.54 1.55	6.24 6.68 6.48 6.66 6.48	13.55 13.50 11.78 12.44 12.77	10.71 10.95 11.01 10.47 11.47	0.14 0.14 0.13 0.13 0.14	0.07 0.07 0.06 0.05 0.06	0.57 0.57 0.58 0.66 0.63	0.81 0.87 0.95 0.81 0.81	0.07 0.07 0.07 0.07 0.07	112.4 110.4 95.9 102.8 105.6
Moy. X Ec.t. s Ec.r. s%	81.15 0.89 1.95	5.12 0.72 14.05	1.17 0.51 43.91	6.51 0.18 2.79	12.81 0.75 5.82	10.92 0.37 3.42	0.14 0.01 3.91	0.06 0.01 13.94	0.60 0.04 6.82	0.85 0.06 6.49	0.07 0 0	105.4 6.5 6.2

A: Echantillon AAB 1075

LEGENDE DES ANNEXES III.3.4 - Courbes de pyrolyse comparative des échantillons utilisés pour l'étude de reproductibilité des résultats de pyrolyse comparative. Les teneurs en *S1* (hydrocarbures légers), *S1'* (hydrocarbures lourds), *S2'* (résines & asphaltènes) et *S2* (kérogène) sont reprises à l'annexe III.3.3.8.

B: Echantillon AAB 2487

Essai 6

•

ANNEXE III.4

ANNEXE III.4.	DONNEES DE	PYROLYSE	POUR	L'ETUDE	DES	ANOMALIES	EN C	:02	ORGANIOUE

ECHANT.	COTre	COTrt	IHre	TMax	IOre	IOrt	D 10	%Carb
GR 81988 83	4.478	8.779	803.000	432.000	34.000	79.000	-45.800	7.188
GR 02000 03	9.950	21.330	828.000	442.000	25.008	43.880	-18.000	17.780
68 03080 03 68 04030 03	15.640	18.//8 28.499	//1.000 797 898	443.000 111 090	23.000	46.000 AT 000	-23.000 -20 808	10.980
SR 05080 03	25.198	30.560	966.008	450.689	34.000	35.888	-1.000	24.800
(1 19789 93	12.458	15.37B	664.800	415.886	57.000	57,088	8.000	22.888
E 48922 03	9.298	15.400	556.000	428.888	43.888	54.000	-11.886	48.000
4F 31260 83 SF 31974 83	1.008	9.2100 9.479	528.008 515 GAG	400.000	53.888 (1 885	68.000 77.699	-3.000	4.508
F 31286 83	18.858	12.488	655,688	440.000	10.000	23.000	-13.898	9.888
AF 31287 83	11.000	12.378	715.800	445.000	15.600	20.000	-5.088	12.888
¥F 31322 83	3.678	4.270	767.888	443.800	13.808	31.000	-18.008	15.200
HF 31347 83	2.888	2.798	479.888	432.888	19.888	54.000	-35.000	24.688
10 03032 03 10 08013 03	2.526	2.730	296 889	423.000	163.000 204 000	67.000 A 7.000	58.000 143 899	17 700
B 10758 03	3.190	3.530	261.888	425.600	115.000	59.888	56.988	12.100
AB 14010 03	2.858	3.168	486.000	426.000	98.000	50.888	48.600	21.900
AB 18118 83	2.229	2.538	372.000	432.809	81.880	39.000	42.800	10.308
AB 21432 83	1.868	2.250	269.000	436.000	72.908	38.000	34.000	17.589
AB 27719 83	2.270 0.370	2.000 0.410	177.000 A AAA	୩୦୨.୪୪୪୪ ଭୂରରର	38.000 174 990	30.000 75 RAA	73.058 13.058	13.400 28 AAA
AB 27711 83	6.198	0.500	147.000	455.000	362.000	63.808	299.888	28.000
AA 19980 83	8.008	0.198	0.696	8.000	563.000	236.000	327.888	8.088
A 20011 03	2.280	8.510	371.008	438.888	67.888	131.000	-64.898	40.488
HA 28015 83	0.548	8.628	269.000	438.080	1007.000	166.888	177.000	8.688
18 20037 03 30 20047 97	1.170 A 250	4 996	428.000 75. Dog	443.000 445 090	298.000 75 999	/1.000 7.1 202	-9.888	6.005 6.000
A 28083 83	0.268	0.839	135.688	0.888	8.998	B. 686	8.888	31.886
A 20142 03	8.648	8.908	289.000	445.888	788.000	114.888	8.988	0.088
A 20152 03	3.818	2.388	754.888	432.808	448.888	118.888	338.688	69.588
NA 20153 03	8.398	8.856	418.000	436.000	42.888	28.000	14.690	69.000
14 20102 00 14 20152 00	0.900 2.750	0.360 3.550	233.000	437.000 344 980	10 990	27.666	265.000	8.888
A 28810 83	6.260	8.429	BB.000	448,000	161.888	52.888	109.200	29.409
A 38631 83	2.818	3.488	516.000	452.888	24.888	66.000	-42.888	0.080
¥ 38648 03	3.480	4.698	454.888	451.888	19.000	37.000	-18.888	8.800
6 66615 83	8.648	8.668	193.008	8.689	217,808	165.000	52.000	20.409
10 00000 03	1.130	3.120 8.170	168.888 777 388	8,000 170 000	122.000	1/6.000	-143 000	11 404
6 28313 83	8.898	8,988	388.000	439.000	52.880 69.888	58.888	2.000	14.988
6 22345 83	8.560	0.568	321.080	442.000	237.000	66.000	171.888	28.089
6 22372 83	1.020	1.020	323.000	433.888	59.000	31.000	17.800	8.000
NG 22412 03	6.778	7.158	B19.888	437.888	29.809	38.888		5.008
6 22464 83	1.718	1 949	401.000 At 200	443.000 137 888	1/0.000 51 998	33.888 29 444	83.888 74 ARM	17.600
6 22783 83	4.738	5.070	728.999	441.000	33.660	16.888	17.899	12.689
6 22721 03	9.450	11.050	782.880	445.000	25.690	18.688	7.888	12.886
6 22762 03	4.278	4.648	896.908	442.000	35.008	29.888	6.000	13.888
16 232516 43 No 17975 47	8.128	9.318	706.000	438.080	28.888	27.866	1.069	13.888
10 23273 103 15 Dispensi 103	3.458	0,090 4 590	763.000 573.000	930.000 797 944	35.005 17 ABS	23.800 Ti 039	3,000 71 899	18.000
E 86488 83	8.828	4,010	449.888	419.888	136.888	53.800	83.888	79.880
E 86388 83	3.168	5.498	543.888	488.000	51.000	33.000	18.388	41.988
E 87288 83	2.758	9.110	587.888	418.888	66.000	33.800	33.880	67.888
12 8/588 83. E gogga az	5.968	11.038	634.888	415.808	49.088	35.800	14.888	47.089
E 838488 83	4,580	0.330 9315	/00.000 677 202	400.000 107 888	40.000 58 849	01.000 77 000	17 895	41 000 41 000
E 068880 03	1,588	2.428	517.000	414.988	187.089	57.888	58.689	39.880
E 18889 83	3.520	6.718	685.888	416.000	66.888	38.888	36.888	45.888
E 18488 83	3.480	6.668	527.088	415.008	53.908	25.888	28.000	47.888
HE 10800 03	3.258	12.080	571.000	413.000	59.888	25.888	34.800	78.888
AE 11288 83	3.110 7 790	3,676 1,903	371.000 172.000	913,000 197 000	78.808 71:888	33.000 75 444	57.1808 197.042	90.808 58 999
NE 12488 03	1.040	1.788	189.000	431.800	167.888	132.888	37.888	45.888
E 12880 03	8.080	0.798	176.088	431.088	98.089	137.888	-39.688	21.008
AE 13288 83	8.988	1.230	159.080	432.008	142.088	73.888	69.888	31.000
VE 17200 07	a 510	Q 704	177 398	173 000	177 888	111 000	7 000	78 888

× .

LEGENDE DE L'ANNEXE III.4 - Données géochimiques concernant l'analyse du CO₂ organique de roches à kérogène de diverses provenances *Re*: roche extraite, *Rt*: roche extraite et traitée, *COI*: Carbone Organique Total, *IH*: Indice d'Hydrogène (mg HC/g Corg.), TMax pic S2 (°C), *IO*: Indice d'Oxygène (mg CO₂/g Corg.), *D*₁₀: différence (IO roche traitée - IO roche extraite), *\$Carb*: teneur en carbonates.

ANNEXE III.4

CHANT.	COTre	COTrt	IHre	TNax	IOre	IOrt	D 10	%Carb
E 14888 0	3 8.648	9.810	167.000	433.000	137.008	111.800	26.000	24.00
E 14488 8	3 0.440	8.528	125.000	433.000	165.608	138.008	27.080	22.00
15 14808 8 15 15299 0	Ն 8.046 Հ ԴՏՏԴ	0.698 0.470	75.000 71 ABA	438.866	103.000	63.000	38.896	32.78 21 49
E 15688 8	3 0.448	8.358	28.008	426.888	57.688	34.808	25.880	18.58
E 16888 8	3 0.330	8.378	58.000	416.898	78.886	97.698	-19.888	19.30
E 16400 0 E 12000 0	3 18.398		74.088	426.888	76.000	67.688	9.000	28.60
E 10060 0 E 17230 0	3 10.370	10.448 18.129	62.000 93.688	419,600	72.000 Ra see	04-181018 1.5.99398	8.606 68.909	22.80
E 17500 0	3 0.360	0.360	81.066	430.888	136.908	61.889	75.880	23.58
E 18020 0	3 0.358	6.368	68.680	431.000	140.688	81.008	57.088	23.68
E 18499 9 E toata a	3 10.186 3 0.020	18.158 0.509	67.808 77 808	416.000		28.988	91.098 (() 000	21.60
E 19287 0	3 0.448	6.468	157.888	416.888	43.888	16.989	27.000	16.88
E 19238 Ø	3 0.850	1.368	198.080	422.098	68.880	27.088	33.888	15.00
E 19284 8	3 17.110	34.398	351.008	426.888	17.000	14.888	3.000	20.30
E 1931/ 0 E 19379 0	3 10.158 7 9.199	2.10/18 10 459	388.000 197 AAA	423.000	8.888 41 999	16.088 33 699	8.009 77 949	11.40
E 19429 8	3 0.240	1.188	282.060	0.808	33.800	22.608	11.888	11.68
E 19515 0	3 8.170	8.198	571.888	8.888	211.800	58.000	161.888	14.68
E 19677 8	3 0.670	8.798	234.000	8.088	218.000	69.808	158.000	18.28
- 19878 8 - 18878 8	3 0.068 7 9.749	8.088	273.008	416.800 474 889	48.868	22.008 57 900	26.800	11.28
20080 0	3 8.230	0.720	17.888	429.988	73.886	16.080	77.080	64.20
20080 0	3 0.240	1.398	79.088	427.808	53.000	16.880	37.888	73.68
20140 0	3 0.260	1.330	65.080	438.888	103.000	25.888	78.888	70.88
: 28220 0 : 20259 0	5 10.4318 T G 310	3.148 2.050	461.000	435.668	51.000	5.080	25.686	4.28
20201 8	3 3.060	3.578	438.888	426.888	8.888	19.868	-11,000	11.00
29330 8	3 0.268	0.588	315.808	429.000	76.000	55.080	41.000	11.08
20371 0	3 0.248	8.318	429.000	401.000	58.000	54.808	4.080	13.06
26418 6	3 2.480	4.468	352.608	409.000	41.880	19.008	22.000	48.8
28576 8	3 0.040 3 9.450	3.436 2.318	175.008	433.000 478 988	51.00B 49.998	17 888	24.000	91.50 86 40
28869 9	3 0.330	1.050	39.808	431.800	118.968	57.888	57.688	71.6
21868 8	3 0.370	1.340	54.000	433.080	218.988	88.888	138.008	75.8
26744 8	3 8.298	8.680	345.000	444.000	28.800	41.000	-21.008	38.00
26,65 6 26799 a	3 1.228 T 1.199	1.378	241.000 173 009	927.008 Ato 099	6.860	18.008	0.000	6.00
26817 9	3 8.448	0.420	245.008	421.888	6.666	2.688	0.008	8.00
27128 0	3 0.250	0.028	32.000	0.808	168.088	0.000	8.008	23.86
27148 8	3 0.256	8.108	15.008	441.888	82.000	8.686	0.000	26.80
: 2/100 0 : 27700 0	3 10.1980 3 10.1980	10-1538 01 1703	26.000	0.808	231.000 284 890	0.000 9 gaa	0.888 9.999	4/.60 50 00
27240 0	3 13.300	26.320	579.000	442.888	14.000	14.080	8.028	38.6
27508 8	3 12.639	21.669	705.000	441,888	13.000	16.999	-3.868	38.8
27360 8	3 21.030	35.218	732.080	441.888	12.608	14.000	-2.880	27.6
- 22420-0 - 27880-0	3 10.808 3 15.619	27.000	551.000 595 888	437.000	18.888	13.080	-3.888	29.61
27520 0	3 4.778	15.038	669.888	437.008	12.688	14.888	-2.889	69.6
27588 0	3 7.800	21.350	785.888	448.888	13.000	15.080	-2.888	59.8
27529 8	3 7.020	24.498	798.808	439.888	15.888	16.000	-1.088	67.4
-27000 0 -77790 0	3 /1000 7 / 899	17.160	834.008 777 000	442.000 143 099	14.888	17.000	-1.066	54.8
99999 9	ç 8.088	9.008	780.888	441.988	14.688	14.688	2.000	58.4
27748 0	3 5,548	15.710	788.888	441.088	14.008	12.689	3.000	62.2
27788 8	3 9,918	16.880	785.000	439.880	15.600	12.606	-7.000	32.2
- 2/870-8 - 31055-0	3 1./08 3 2.750	/.0/0	671.000 Ara 282	441.000 Aat 988	7.666 09.000	10.000	-/.068	/4.2
34188 8	3 7.858	8.880	677.000	445.888	15.008	7.028	8,669	8.0
34588 8	3 1.890	0.888	399.000	442.888	133.000	22.000	111.000	19.8
34518 8	3 1.849	0.000	334.000	439.008	223.000	42.800	181.000	14.8
34518 8 34578 8	3 2.000 3 6.070	6.000 9.000	903.000 497 000	441.000 451 999	i∠0.000 it gas	23.800	75.000	14.8
34928 8	3 3.898	8.988	614.00P	458.888	51.808	7.888	44.888	5.9
34858 8	3 2.098	8.888	451.000	452.000	37.000	18.888	27.888	25.0
35155 0	3 3.948	6.699	387.698	447.888	22.000	6.000	16.000	13.8
30176 0 35010 0	ა /.386 ჳ ჳჳით	6.698 G 646	303.000 470 000	447.888 887 888	47 000	/.998 (7.008	2.688	15.8
35338 4	3 4,959	8.000 8.898	454.000	438,888	- 64.800	22.000	30.060 42.000	1/.8 29.4
35350 0	3 5,250	8.688	574.000	448.088	31.808	9.088	22.000	20.0
35375 8	3 4.918	8.888	549.888	448.888	59.008	14.000	45.880	14.8
35588 8	5 5.129	0.000	531.000	445.088	33.000	11.808	22.688	36.0
- 300000 10 - 35510 0	5 6./18 3 7.439	8 828 8 828	391.000 577 988	44/.000 450 are	19.000 14 996	8.600 7 000	0.000 7 Dog	15.8
35638 0	3 8.758	8.000	557.888	439.888	16.000	8.008	8.000	13.8
35648 8	3 6.520	0.000	581.008	445,888	16.888	18.000	6.888	44.8
75010 0	7 3 3 3 3	6 6 6 6	4 999	417 000	17/ 000	0 0.04	0 300	a a

•

ANNEXE III.5. RESULTATS ROCK EVAL D'ECHANTILLONS VIEILLIS PAR PYROLYSE SECHE

A: TYPE I (Crétacé d'Angola)

CONDI	TIONS	<u>AAB 2029</u>									
VIEILL	ISSEMENT	Va	aleurs	absolue	Valeu	Valeurs relatives					
T (°C)	heures	TMax	COT	\$2	COT%	\$2%	IH%				
Roche ex	ktraite	442	6.15	53.87	876	100	100	100			
300	1	437	5.49	45.02	83U 015	89.27	84.69	94.75			
200	2	444 425	5.40 5.20	44.00	010	07.64	02+/U 01 CO	93.04			
300	4	400 126	5.35	44.JZ	022 026	07.04	01.00 02 K2	93.04			
320 จกก	8	430	5 10	4J.01 27 A2	030 721	81 30	60.00	90.40 82 31			
320	2	443	5.11	40.25	786	83.25	74.72	89.73			
300	16	445	4.78	31.38	656	72.72	58.25	74.89			
320	4	436	5.17	39.92	772	84.07	74.10	88.13			
340	1	436	4.81	36.75	764	78.21	68.22	87.21			
320	8	435	4.46	30.52	684	72.52	56.65	78.08			
340 ·	2	434	4.34	29.96	691	70.57	55.62	78.88			
3 20	16	444	3.84	17.26	445	62.44	32.04	50.80			
340	4	441	3.65	21.02	575	59.35	39.00	65.64			
340	8	443	2.94	11.84	420	47.80	21.98	47.95			
340	16	465	2.63	3.96	150	42.76	7.35	17.12			
320	64		3.03	2.12	70	49.27	3.94	7.99			
340	32	4 85	2.29	1.41	61	37.24	2.62	6.96			
340	64 ·		2.54	1.15	45	41.30	2.35	5.14			

LEGENDE DES ANNEXES III.5: Résulats Rock Eval d'échantillons vieillis par pyrolyse sèche. Le vieillissement est effectué sur des échantillons extraits au solvant organique, dans le four de pyrolyse du Rock Eval, sous un courant d'hélium et à température constante. Classement des résultats par effet croissant de la température *I* et du temps *t* (heures), sur la maturation de la matière organique. Les résultats Rock Eval sont: la température *IMax* (°C), le Carbone Organique Iotal *COI* (%); l'Indice d'Hydrogène *IH* (mg HC/g Corg.) et le potentiel pétrolier résiduel *S2* (mg HC/g roche). Les valeurs relatives de COI, S2 et IH (%) sont calculées par rapport aux valeurs initiales de la roche extraite.

B:	TYPE	IIa	(Toarcien	du	bassin	de	Paris)	l.
----	------	-----	-----------	----	--------	----	--------	----

CONDI	IONS	<u>FEC 15050</u>										
VIEILLI	SSEMENT	٧i	aleurs a	bsolues	Valeurs relatives							
T (°C)	heures	TMax	COT	\$2	IH	COT%	\$2%	IH%				
Roche ex	ktraite	422	13.01	82.80	6 36	100	100	100				
280	1	424	12.50	73.00	584	96.08	88.16	91.82				
280	2	426	12.24	68.54	560	94.08	82.78	88.05				
280	4	427	11.65	62.21	534	89.55	75.13	83.96				
300	1	427	11.92	64.84	544	91.62	78.31	85.53				
280	8	427	11.69	61.01	522	89.85	73.68	82.08				
300	2	429	11.30	56.95	504	86.86	68.78	79.25				
280	16	432	10.64	47.37	445	81.78	57.21	69.97				
300	4	431	9.95	48.46	487	76.48	58.53	76.57				
320	1	430	10.68	49.66	465	82.09	59.98	73.11				
300	8	434	10.51	43.20	411	80.78	52.17	64.62				
320	2	436	10.21	37.37	366	78.48	41.13	57.55				
280	16	435	10.55	27.32	259	81.09	33.00	40.72				
300	16	437	9.57	29.83	311	73.56	36.03	48.90				
320	4	439	9.08	25.24	278	69.79	30.48	43.71				
340	1	439	9.42	33.82	359	72.41	40.85	56.41				
320	8	445	8.44	18.65	211	64.87	22.52	33.18				
340	2	444	8.47	21.43	253	65.10	22.88	39.78				
320	16	448	8.31	5.32	64	63.87	6.43	10.71				
340	4	452	7.90	9.72	123	60.72	11.74	19.34				
340	8	452	7.40	9.55	129	56.88	11.53	20.28				
340	16	458	7.33	6.82	93	56.34	8.24	14.62				

C:	TYPE	ΙIb	(Miocène	d'Angola)

.

CONDI	TIONS	<u>AAB</u> 0801										
VIEILL	ISSEMENT	Vi	aleurs	absolue	s	Valeurs relatives						
(°C) T	heures	TMax	COT	\$2	IH	COT	\$2	IH				
Roche ex	ktraite	429	3.20	10.50	327	100	100	100				
280	1	433	3.10	7.66	247	96.87	72.95	75.54				
280	2	433	3.09	7.36	238	96.56	70.10	72.78				
280	4	436	3.03	6.45	212	94.69	61.43	64.83				
300	1	436	3.00	6.87	229	93.75	65.43	70.03				
280	8	438	3.07	5.46	177	95.94	52.00	54.13				
300	2	438	2.99	6.21	207	93.44	58.14	63.30				
280	16	438	2.97	5.68	191	92.81	54.10	58.41				
300	4	439	2.89	4.99	172	90.31	47.52	52.60				
320	1	440	2.90	5.19	179	90.62	49.43	54.74				
300	8	442	2.88	3.99	138	90.00	38.00	42.20				
320	2	- 444	2.79	3.85	139	87.19	36.67	42.51				
280	16	443	2.91	1.83	62	90.94	17.43	18.96				
300	16	443	2.77	2.64	95	86.56	25.14	29.05				
320	4	446	2.77	3.08	111	86.56	29.13	33.94				
340	1	448	2.60	2.80	107	81.25	26.67	32.72				
320	8	447	2.67	2.30	8 6	83.43	21.90	26.30				
340	2	450	2.60	1.95	75	81.25	18.57	22.94				
320	16	451	2.72	1.79	65	85.00	17.05	19.87				
340	4	456	2.61	1.77	67	81.56	16.86	20.41				
340	16	469	2.56	1.09	42	80.00	10.30	12.84				

- 39 -

ANNEXE IV

ANNEXE IV: <u>DONNEES DE BASE SE</u> <u>RAPPORTANT AU Chapitre IV</u>

<u>Annexe V.1</u>
Listing détaillé des données, calculs et résultats cinétiques pour la roche à kérogène AAB 2487.
<u>Annexe IV.2</u>
Reproductibilité des Paramètres cinétiques de la pyrolyse.
<u>Annexe IV.3</u>
Données Rock Eval et cinétiques de la pyrolyse de roches à kérogène.
<u>Annexe IV.4</u>
Paraffin Index et données cinétiques de la pyrolyse de roches à kérogène.
<u>Annexe IV.1</u>
Paramètres cinétiques de la pyrolyse de roches à kérogne vieillies artificiellement.

-+000+-

.

ANNEXE IV.1. LISTING DETAILLE DES DONNEES, CALCULS ET RESULTATS CINETIQUES POUR LA ROCHE à KEROGENE AAB 2487

ANNEXE IV.1. DONNEES DE PYROLYSE COMPARATIVE EN TEMPERATURE REELLE.

		NOMBRE_D	E COUPS		VALEURS	NORMALI	SEES (%	.)	
N() =====	T*C	R Brute	R Extr	Blanc	R Brute	R Extr	Bitune	51+51'	\$2'
1	250	3	1	0	.81	0	.01	.01	6
2	255.7	175	15	8	.67	.85	.62	.62	0
د م	261.2	812 1163	32	0 0	3.1Z 4.47	17	3 6 74	5	9 9
5	207.12	911	28	8	3.5	.11	3.4	3.4	6
6	278.7	614	28	8	2.36	.08	2.29	2.29	8
7	284.4	432	15	0	1.65	.86	1.6	1.6	0
9	298.2	327	11	8	1.26	.04	1.22	1.22	0
9	295.9	267	8	8	1.03	.03	1	1	0
10	301.7	230	8	6	.88	.63	.85	.85	8
11	30/.4	200	7 0	e a	. 19	-03 07	.70	.76	10 A
12	318.9	173	7 101	R	.7	.84	.67	.67	6
14	324.6	178	13	ø	.68	.05	.63	.63	e
15	338.4	175	13	0	.67	.05	.62	.62	0
16	336.1	173	14	6	.67	.65	.61	.61	e
17	341.9	174	16	8	.67	.06	.61	.61	0
18	347.5	178	19	8	.68	.67	.61	.61	8
19	353.3	179	22	ι Γ	.69	.02	.6	.0	ю а
20	337.1	198	27	e A	.73	-12	-61	.e	.03
22	378.5	198	41	e	.76	.16	.6	.56	.05
23	376.3	207	50	6	.8	.19	.6	.54	.07
24	382	223	58	8	.86	.22	.63	.52	.12
25	387.8	238	70	6	.92	.27	. 65	.5	.15
26	393.5	257	86	0	.99	.33	.66	.46	.18
27	399.2	282	186	0	1.08	.4	.69	.46	.22
26 20	400 7	313	136	e e	1.2	•D	./1 70	,44 57	.2/
27	410.7	395	196	8	1.52	.75	.77	.4	.37
31	422.2	451	240	ē	1.73	.92	.82	.38	.43
32	427.9	519	297	e	2	1.14	.86	.37	.49
33	433.7	683	364	8	2.32	1.39	.93	.35	.58
34	439.4	782	440	6	2.7	1.68	1.02	.33	. 69
35	445.2	815	536	9	3.14	2.05	1.08	.31	.78
30	456.9	922	629 710	к a	3.00	2.4]	1.14	• 49 27	,85
37 75	400.0	1132	885	ø	4.35	3.06	1.27	.25	1.02
39	468.1	1209	869	8	4.65	3.33	1.32	.23	1.09
40	473.9	1225	925	8	4.71	3.46	1.25	.21	1.04
41	479.6	1193	982	6	4.59	3.45	1.13	.19	.94
42	485.3	1110	861	6	4.27	3.3	.97	.17	.8
43	491.1	995	781	0	3.83	2.99	.84	.15	.6B
44	496.8	829	6/9 57:	e n	3.3	2.6	./	.13	.57
45	502.0	500	274 471	e A	2.10	1.8	. 47	.12	.37
47	514	467	375	p.	1.8	1.43	.36	.88	.28
48	519.6	365	293	e	1.4	1.12	.28	.Re	.22
49	525.5	283	225	0	1.29	.80	.23	.84	.19
50	531.3	217	175	e	.83	.67	.17	.02	. 15
51	537	163	132	9	.63	.5	.12	8	.12
⊒2 57	392,/ 548 5	121 92	101 77	r P	.4/	.30	. CC	r A	.03 .06
54	554.2	73	65	e	.28	.25	.83	8	.03
55	568	63	60	ø	.24	.23	.01	e	.01
56	565.7	59	55	6	.23	.21	.02	6	.82
57	571.4	55	53	8	.21	.2	.01	0	.01
58	577.2	54	53	6	.21	.2	6	e	e
59	582.9	53	52	8	.2	.2	e	0	8
61	308./ 594 4	23 57	21 50	e A	.2	. 19	.01	ю Ю	.01
62	602.1	52	48	ê	.2	.18	.02	ē	.02
63	685.9	50	46	e	.19	.18	.02	8	.02
64	611.6	48	45	6	.18	.17	.01	e	.01
65	617.4	46	42	6	.18	.16	.02	6	.02
66	623.1	45	40	8	.17	.15	.02	6	.02
67	628.9	39	35	0	.15	.13	.02	8	.02
68 40	634.6	33 70	21	К А	.13	.12	.62	r a	. 16.1 (3-1
79	646.1	P.	P	P	8	 Р	6	e	6
71	651.9	8	e	e	e	8	8	8	0
***				*******					***********
TOTA	UX .	25995	13398	8	100	51.54	48.46	33.68	14.78

A: Tableau des données de base.

 Tableau des données de l'intégration numérique des courbes de pyrolyse comparative, en température réelle (voir légende de l'annexe III.1 pour la description des variables).

,

8. Tableau des résultats de pyrolyse comparative

	R Brute	F Extr S2	Bitume	Rés+As S2'	HC Lourds 51'	HC Légers Sl	
HGR/GR R 2 TOC T MAX 1H 10 C PYR / C	9.15 100 2.62 350 PYR NORM.	4.72 51.54 2.18 444 216 .396 /	4.43 48.46 18.17	1.35 14.78 .18 747	.82 8.94	2.26 24.74	
INDICES R	IOCK-EVAL			46=135555	172 <u>43220</u> 7777		*******
IMB = Kér IKA = Kér IBM = Rés IOM = Oua IOM = Ind Bituminis	ogène -> Bi ogène -> Ri ines + Aspi lité de l'I ice Pétroli ation Ratic	itume (S1 ésines & Galtènes Guile (S1 Ger class g = mg (S	+S1'+S2')/ Asphaltène: -> Huile (\$ /S1+S1') 19UE S1/(\$ 1+S1'+S2')	(\$1+51'+52 5 (52'/52' 51+51')/(5 1+51'+52'+ / g Corg.	(*+52) : +52) : (1+51 *+52 *): : : : : : : : : : : : : : : : : : :	.48 .22 .7 .73 .25 169,24	

C. Courbe de pyrolyse comparative

e

• • • + + • • **•** 258

1

**** ***** ******

2

S2 = (+) + Pyrolysat du Kérogéne S2'= (-) : Pyrolyset des Resines & Asphaltenes S1'= (♦) : Hydrocarbures libres ou absorbés, louros ((:= 25) S1 = (+1) Hydrocarburgs libres by accortés, legers (C = 25) 51+51+52 = BITUME 4 5 7 8 9 3 6 18 X HE / 11 *C --+--------+-******* ******

**** ***** **** **----------•••• •••• *** ...

T'r V

ANNEXE IV.1.2. DETAIL DES OPERATIONS DE CALCUL CINETIQUE POUR LE PYROLYSAT S2 DU KEROGENE

A. Tableau de Freeman & Carroll

									D (1/	(T)		
									D ln()	 (
***	FREEMA	N & CA	RROLL ++	**		**** Y = -(E/R) X	+ Ŋ #₽±₽		D 1-7-	47/471		
DE	AAB248	7	KERVGENE	(52)					¥ =	12/01/		
									D ln(1-7)			
I	: T°C	T⁺K	C/Tr :	dZ	Z	1-2 D (1/T)	D ln(1-2)	D ln(dZ/dT)	: X (E-5)	Y		
9	: 296	569	8 ;	0.0c	8.8ċ	99.94 :	19941911999	**********	:			
10	382	575	B ;	0.06	8.12	99.88 : 1.76E-5	0.000ó	8.8888	2904.11	0.63		
11	307	586	9:	0.27	0.19	99.81 : 1.72E-5	0,0007	-0.1178	2527.92	-173.01		
17	: 313	500	19	0.07 0.09	0.25	99.74 1 1.692-2 99.77 1 1.65E-5	0.000 0.0000	40.0000 	1 24/7.21	-175 12		
14	325	599	13 1	0.10	0.43	99.57 : 1.62E-5	0.0010	-0.2624	1646.72	-266.24		
15	: 330	683	13 ;	B. 12	8.53	99.47 ¦ 1.59E-5	8.0210	8.0000	: 1613.93	8.02		
16	336	689	14 :	8.11	0.63	99.37 : 1.56E-5	8.0011	-0.0741	1468.64	-69.68		
17	; 342	615	16 ;	8.12	8.70	99.24 1.53E-5	0.0012	-2.1335	1259.84	-189.76		
18	: 348	621 621	19 :	8.14 R 17	1.95	99 94 1 1 APE-5	0.0214	-0.1/19	: 1039.78 : 880.20	-118.78		
20	: 359	632	29	6.22	1.28	99.72 1.45E-5	8.8022	-8.2763	1 654.38	-124.68		
21	: 365	638	31 1	8.23	1.52	98.48 1.42E-5	8.0024	-8.8667	: 599.69	-28.00		
22	: 371	644	41 :	8.31	1.83	98.17 ; 1.40E+5	8. 8031	-0.2796	444.13	-88.79		
23	376	640	50 '	0.38	2.21	97.79 : 1.37E-5	0.0039	-8.1985	356.50	-51.52		
24	; 382 ; 302	655 441	58:	10.44 0.57	2.64	94 83 1.352-5	6.0845 8.005	-10.1484	: 368.68	-33.87		
26	1 394	661 667	76 / 85 :	0.00 8.65	3.82	96.18 1.30E-5	0.0834 0.08357	-8.2659	193.67	-30.59		
27	399	672	105	8.79	4.51	95.39 : 1.28E-5	8.0093	-2.1996	154.75	-24.11		
28	1 405	678	129 :	8.97	5.59	94.41 : 1.26E-5	8.0103	-8.2859	122.69	-20,05		
29	411	68-4	168	1.21	6.88	93.20 1.24E+5	8.8:29	-0.2154	96.14	-16.72		
30	416	689	195 :	1.47	6.27	91.73 : 1.22E-5	B. 0159	-0.1978	76.46	-12.42		
31	422	640 70 ·	239 :	1.82	12.07	87.43 (1.20E-C 97.49 / 1 19E-5	B. B. 9757	-0.2635	· 66.25	-12,24		
33	434	787	362 1	2.73	15.84	84,96 1,16E-5	8.0317	-8.2013	36.59	-e.3c		
34	439	712	438	3.31	18.35	81.65 1.14E-5	8,0397	-8.1920	28.71	-4.82		
35	; 445	715	533 ;	4,85	22.38	77.62 : 1.128-5	6.6500	-8.1963	22.19	-3.88		
36	451	724	626 :	4.73	27.10	72.90 1.10E-5	0.0029	-8.1689	\$7.57	-2.56		
37	457	732	715	5.48	32.50	67.50 1.098-5	8.0770	-8.1329	14.12	-1.73		
38 19	1 402 1 469	735	82. ·	6,85	38.35 45.85	54 92 1 1 25E-5	B 1154	-0.1130	: 11.37	-0.55		
48	: 474	747	999	6.80	51.86	48.12 1.04E-5	8.1321	-8.8397	7.65	-8.30		
41	480	753	895 :	6.78	58.55	41.34 : 1.02E-5	8.1519	e.ec22	: 0.72	6.51		
42	485	758	957	6.47	65.13	34.87 : 1.015-5	0.1703	6.6457	: 5.91	8.27		
43	491	764	777	5.87	71.00	29.88 : 8.995-5	8,1843	8.0982	5.38	P.53		
44	. 697	770	5/6 1	5.10	/6.11 62 .1	10 50 1 0 CLE_F	0.1930	10.1392 D 1.55	5.04	18		
46	588	781	457	3.54	53.96	16.8- 8.952-5	0.1905	8,1968	4.75	8,99		
47	514	787	373 ;	2.82	80.78	13.22 : P. 93E-5	8.1931	0.2298	4.83	1,1*		
48	528	793	292	2.21	85,95	11.02 0.928-5	8. 1824	8.2449	: 5.04	1.34		
40	520	79=	22-	1.05	92.2	9.33 C.91E-5	8.150	8.265	5,44	1.59		
512	· 531	86.4	174 1	1.3) a oc	4],44 07.00	8.01 (0.995-5 7 0.7 0 000-5	Ø.1519 Ø.1716	0.1576 0 2020	5.85	1.00		
52	. 543	616	166 1	8.70	93.73	6.27 + 8.57E-5	6,1139	8,2738 —		2.37		
53	5-9	811	77.1	6.58	4-,31	5.09 8.805-5	0.257-	C.20)+	6.82	2.09		
54	: 554	617	65 '	2.49	e=,98	5.20 : 0.94E-5	8.0903	8.169-	. 9.30	1.59		
55	558	937	5£ (8.45	95.20	4.74 8.93E-5	8.89:2	6.0865	9.13	8. K		
56	560	6 <u>1</u> 0	55	8.42	95.5° C. A ⁻	4.33 : 0.92E-5	8.8917	0.0372	8 -	8.55		
52 58	2/1 : 577	844	52 C 57	10,41 10,2	42.2 92 a7	3.43 - 0.811-5 3.53 : 0.881-5	0.0973 0.1075	6.63 C 6 2000	b.31	19. JE 2. JE		
59 59	583	85:	52 -	0.3°	9c . 8	3.13 ; 8.798-5	8.118)	8.2140	6.08	6.10		
68	: 569	80.	51 :	8.39	97.25	2.75 1 8.78E-5	0.1311	8.8194	. 5,94	e. : 5		
61	594	8e7	5e :	e. 38	57, 23	2.37 0 .776-5	6.1478	8.81°3	5.20	e.13		
62	685	873	4 8	8.30	97.99	2.81 0.76E-5	0.1559	0.0422	4.57	6.25		
63	000	875	42	8,35 9 T	42.34	1.66 - 8.75E-5	6.15°°	8.8-1c 0.0000	. 3,94	6.21		
65 65	- 119 161	600 640	<u>،</u>	0.24 P. 30	90.08 99.90	1.32 - 0.745-3 1.00 : 0.736-5	0.2282 0.2744	B. BA92	· 3.13	е. ie р %		
55 56	: 613	646	412	8.32	9°, 38	0.72 : 0.725-5	0.3577	8.8-55	1.65	6.14		
67	629	98	35 (6.2c	99.50	0.44 · 0.71E-5	8. 4722	8.1335	1.50	e. 28		
68	635	6 85	31 :	Ø. 23	eq. 82	0.20 : 0.708-5	0.7640	8. 1214	: P. 91	P.10		
f.c	640	9:3	27 3	6.20	165, 66	6.62 8.59E-5	10.1934	6.1391	6.6	6.6:		
- 10 7 1	046	414	Ľ	6.8C	100.00	0.00 0.685-5	0.0000 0.0000	8,0002 0,0002	. 8.22	6.65		
			τ,	0.55	100.00	D.CL - C.DCC-D	C. CVVC	せいいいい	6.64	6.00		

ANNEXE IV.1.2. B. Courbe de pyrolyse normalisée du kérogène 0 2 4 6 8 14 16 te 20 % HC / 11 *C 10 12 -----302 313 325 336 348 359 371 382 394 405 ++ +++ +++ 1 416 ****** 428 439 ****** 451 ***** 462 474 ******* 485 497 ********** ******** 508 528 531 543 554 566 577 589 600 612 623 635 646 ******** ****

C. Résultats cinétiques pour les intervalles [I-(I+1)] et [(I-1)-(I+1)]

..... ***** ****

**** **** *** *** **

.

т•с v

9 296	Ø 34	. 8/ 9	a 22	a aa	9/18	8 90	a 20	1
18 : 382	3, 12	1 9/10	0.33	3.28	1 9/11	4.94	-12.63	
11 : 387	8.18	10/11	-71.38	-1335.63	18/12	-34.29	-512.61	
12 : 313	8.25	11/12	678.28	8455.21	1 11/13	-19.57	-348.15	
3 : 319	e. 33	12/13	-94.49 -	-1178.06	12/14	-61.62	-787.38	1
4 : 325	2.43	1 13/14	-46.95	-655.38	: 13/15	6.37	-76.96	
15 ; 338	8.52	14/15	1614.35	13112.50	14/16	123.91	871.18	1
16 : 336	8.63	15/16	-95.38	-774.29	15/17	-59.96	-496.58	
17 : 342	8.75	16/17	-38.14	-351.56	16/18	-22.62	-242.38	
18 348	8.89	17/18	-8.15	-161.41	17/19	10.58	-49.29	
19 1 353	1,86	: 18/19	37.18	65.81	18/20	-5.82	-131.96	
38 359	1.29	19/28	-32.82	-232.76	19/21	28.21	-7.71	
21 365	1.51	28/21	358.92	1831.81	28/22	9.42	-53.69	
(2:1:3/1	1.82	1 21/22	-//,34	-262.11	: 21/23	-20.91	-11/.08	
231 3/6	2.20	22/23	4,30	100.20	1 22/29	20 71	5 10	
19 1 302 25 1 700	7.17	1 23/24	-5 14	-40 64	· 23/23	4 37	-77 77	
	7,22	1 25/26	15 73	-15 %	1 25/27	70 CC	-4 94	1 1
27 1 374	1.02 1.61	1 20/20	13.13	1 43	1 25/29	29.67	-1 52	1
21 425	5.58	: 27/28	25.15	-4.53	: 27/29	25.86	-4.59	
29 1 411	6.79	28/29	24.94	-4.66	28/38	32.36	-8.38	
38 416	8.26	29/38	43,48	4.27	29/31	36,17	1.28	_ INTERVALLE 457 - 505°C
31 422	12.87	32/31	26.78	-2.12	38/32	26.38	-2.29	
32 ; 429	12.38	31/32	25.59	-2.45	1 31/33	32.23	-8.58	
33 : 434	15.84	1 32/33	41.78	1.32	32/34	48.69	1.18	👔 🖌 🖌 Ecart type sur les valeurs
34 : 439	18.35	33/34	39.26	8.87	33/35	34.38	8.82	d'énergie d'activation:
35 : 445	22.37	: 34/35	27.92	-8.77	: 34/36	37.16	0.75	d chergie d deervacion
36 451	27.18	35/36	56.91	2.47	1 35/37	53.28	2.89	
37 : 457	32.58	36/37	47.93	1.67	36/38	43.61	1.32	r = (F) = 28.81 Kcal/mole
38 462	38.55	37/38	37.71	8.95	37/39	43.31	1.32	
39 : 468	45.88	38/39	51.65	1.75	38/48	51.82	1.71	
410 i 474 ii i ica	51.88	39/40	20.07	1.6/	: 39/41	52.28	1.//	
41 1 488	15 17	1 40/41	1 23.34	1.87	1 48/4Z	75.08	2.06	li Essut tura suu las valauva
42 · 403	71 00	+ 41/4Z	03.27	2.13	1 41/43	13.21	2.34	Ecart type sur les valeurs
44 407	74 - 2	· •2/•3	119 40	7.52	1 17/45	116.97	7 17	d'ordre de réaction:
45 / 537	29 41	1 40/44 1 40/65	172 78	7 87	43/43	170 50	5 07	
46 1 538	83.96	: 45/46	331.24	1 3.001	. 45/A7	-93.88	-1.27	
47 : 514	86.77	46/47	-462.85	-18.86	46/48	-222.78	-4.38	h = 0.9
48 528	28.98	47/48	-148.48	-2.43	47/49	-131.53	-2.01	
49 : 526	92.07	+6/49	-124.38	-1.82	48/58	-74.87	-2.53	
50 : 531	91.99	49.53	-32.46	2.78	49/51	-73.54	-1.33	
51 : 537	92.97	50/51	-121.68	-1.95	: 58/52	-79.54	-8.64	;
52 ; 543	93.73	: 51/52	-45.93	8.58	1 51/53	-58.83	8.46	
53 : 5+8	94.31	52753	-53.18	2. 33	1 52/54	40.65	4.27	
54 1 554	94.90	53/54	287.27	15.48	1 53/55	345.32	17.61	1
55 : 558	95.25	54:55	-673.23	-39,25	54,55	-494.23	-21.53	1
56 566	95.67	55,56	87.99	4.87	55/57	-142.05	-5.57	
57 1 571	96.27	55/57	-183.72	-7.34	56/58	-120.41	-4.56	
28 1 577	96.47	57/58	-63.85	-3.11	57/59	-28.18	-2.89	
.3 · 583	96.36 07.35	58/59	42.43	1.58	: 55/58	19.64	8.76	
25 554	11.23	37/56	-3.33	0.04	1 37/61	-3.56	9.83	
21. 279 An 1 630	7	36 31	-3.10	1 24	00/04	13.12	0.00	
UL 1 21010	7/.74	. 31 0.		1.00	· 21/33	E.C0	0.00	

D. Distribution des valeurs de E et n en fonction de la température, pour les intervalles [I-(I+1)]

		E	nergi (a d'a	ctiva	tion	E (Ke	cal)					Ordre	de réact	tion n		
6	8 18	20	38	48	50	68	79	89	98	196	-4	36	-4	-2	8	2	4
1	r →	+	+	+		+	+	+	+	+->		├	+		1	+	>
296	ł										296						
3672	ł										3872						
387	1										367						
313	{·····						*****				313	*******	*******	********	******	*****	******
317	l										317						
323	l										30 Ta						
336											330		******				
747	1										742						
349	ļ .										342						
353			*****								353			******			
359											359						
365										***	365						
371											371	}					
376		*****	*****				*****	H##			376	*******					
382			m i			****	•				382		*******	******	******	*****	******
388	ļ										388						
394	******	ŧ									394						
399	******	****	*****								399	******	*******		******	****	
485	•••••	*****	He i								485	******	++++				
411	•••••	****	ł								411	******	***				
416	•••••	****	****	****							416	******	*******	******	*****	******	*****
422	******	•••••	HF .								422	******	*******	+++++			
429	****	****	H								428	*******	*******				
434	******	*****	++++++	++++							434	*******	+++++++++	*******	******	**	
439	******	****	*****	•••							439		+++++++++	*******	*******		
443	******	*****	***								443		********	********	**		
431		****		*****	*****	•.					431				********	******	
442		*****			•						412					****	
402											402					*	
474		****									400				*******	****	
489		*****	*****		****	•					498		********		******	*****	
485		****	*****		****	*****					485	*****	*******		****	*****	
491		****						*****	*****	H#	491			*****		*******	**
497		****				*****	*****	***	****		497	*******			*******	*******	***
583	*****	****	++++++		****		*****	*****	•••••		583		*****	******		******	****
508		****			•••••	*****	*****	*****	****	++++	508			*******	******	*******	
514	1										514						
528	}										520		*******	H##			
526											526	*****	*******	*****			
531	ŧ										531	} • • • • • • • • • • • • • •	****	*******	*******		
537	ł										537		*****	*****			
543 .	1										543	******	******	*******	******		
548	ţ										548	********	+++++++++	++++++++++			
554	******	****	+++++	****	*****	*****	*****	*****	+++++	++++	554	*********	******	*******	*****	******	******
560	Į				•						568	ł •		•			
566		++++	****	*****	*****	*****	*****	*****	++		566		*******	********	******	******	******
5/1	l										571	***					
577											577			H I			
283	******	****	****	****							ンセン				••••••••		
264	ł					•					207		********	********	*****		
274	1)74 100				*****		
000	1	****		•							006					•	
י זיד											ע זיז	1					

DIAGRAMME DES VALEURS DE (E) ET (N) EN FONCTION DE LA TEMPERATURE

E. Résultats cinétiques pour tous les intervalles de linéarité

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 57.48 °C

IBIT T	es des C	1 Réa	alles ction	Coeff.Corr.	E(Kca))	Ordre 1
296	35)	.1	1	.6589	1.19	-77.82
377	365	.2	1.5	.1896	2.5	-82.83
319	376	.3	2.2	.35	8,36	-52.86
776	386	.5	3.2	.8722	1.23	-62.84
42	399	.8	4.6	.7893	16.97	-18.9I
353	411	1	6.8	749	28. %	-18.31
365	422	1.5	18.1	.6333	16.36	-12
376	434	2.2	15	.9752	24.63	-3.36
88	445	3.2	22.4	.9955	28.57	-1.52
399	457	4.6	32.5	.9967	31.82	28
11	468	6.6	45.1	.9968	35.55	.54
22	498	16.1	58.7	.9759	38.98	1.81
134	49)	15	71	.996	43.76	1.44
45	583	22.4	88.4	.9963	51.62	1.88
57	514	32.5	66.B	.9775	58.77	2.21
66	526	45.1	98,7	.8732	82.64	3.Bo
88	537	58.7	93	8236	-4,18	. 91
91	548	71	94.3	-,8718	-94.27	-1.31
3	568	88.4	95.3	5812	-33.64	.48
514	571	86.6	96.1	. 884	.31	1.56
26	583	98.7	96.9	8674	-i	1.3
537	594	93	97.6	436	-63.41	-1.37

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 68.00 °C

Liaite 7*(ns des	anterv I Réa	alles	Coeff.Corr. T	E(Kcal)	Ordre n
296	365	.1	1.5	.8773	1.45	-75.11
387	37£	.2	2.2	.1986	3,51	-73.37
319	386	.3	3.2	.4622	18.18	-38.56
336	399	.5	4.6	.2361	3.63	-47.97
342	411	.8	6.8	.8313	17.85	-15.23
353	420	i	10.1	.7927	21.72	-8.85
365	434	1.5	15	.6985	17.86	-9.18
376	445	2.2	2.4	979	25.45	-2.59
389	457	3.2	32.5	.9951	29.28	96
399	468	4.6	45.1	.9964	32.48	.5:
411	488	6.B	58.7	.9966	36.2	.75
422	49)	10.1	71	.9954	39.83	1.17
434	583	15	88.4	.9946	44.96	1.59
445	514	22.4	Bo.8	.9912	53.72	2.65
457	526	32.5	98.7	.9379	63.91	2.52
468	537	45.1	93	.6857	71.85	2.%c
488	548	58.7	94.3	5%ee	-78.15	-1.87
491	568	71	95.3	5581	-42.63	.96
583	571	B8.4	96.1	-,1743	-12.63	1.82
514	583	86.8	96.9	8276	-2.B6	1.22
526	594	98.7	97.6	2575	-32.92	Bc

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 88.30 *(

Linit	es des C	anterv I Réa	alles	Coeff.Corr.	Elkcal)	Ordre n
296	376	.1	2.2	.1825	1.75	-72.8
327	389	.2	3.2	.2975	5.37	-56.41
319	366	.3	4.6	.5351	11.16	-31.57
338	411	.5	6.8	.3542	5.63	-38.13
340	422	.8	18.1	.6581	18.58	-12.31
323	434	1	15	.8211	22.20	-6.6
365	445	1.5	22.4	.7412	18.95	-7.22
376	457	2.2	32.5	.9910	26.80	-1.9
386	468	3.2	45.1	,9948	29.81	55
399	486	4.6	56.7	.9%	33.82	.31
411	493	6.8	71	.9962	36.78	.93
422	583	10.1	8 9 . 4	.9944	48.64	1.23
434	51+	15	Bc.8	.9917	46.75	1.74
445	526	Z2.4	98.7	.9752	56.52	2.20
457	537	32.5	93	.833%	áč.51	2.E
468	548	45.1	94.3	.8617	7.91	1.2E
496	568	58.7	95.3	-, 448;	-42.34	- K
491	57;	71	96.1	- 2811	-21.55	.62
5BJ	563	BE.A	90.9	1143	-18.43	.91
514	594	86.8	97.6	1963	-21.37	.41

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 91.84 °C

Linit	es des C	1 Rea	alles iction	Coeff.Corr.	E(Kca])	(more n
296	388	.1	3.2	.1814	2.92	-68.13
387	300	.2	4.6	.3797	6.52	-46.3
319	421	.3	6.8	.5981	11.93	-26.27
336	422	.5	18.1	.4393	6.98	-30.65
34.	434	.8	15	.8757	19.11	-18. 25
353	445	4	22.4	.8486	22.71	-5.43
365	457	1.5	32.5	.7783	19.79	-5.7
37e	468	2.2	45.1	.99:4	26.56	-1.38
386	496	3.2	58.7	.9646	38.25	22
366	401	4.6	71	. 995.	33.45	. 53
413	583	6.8	88, A		37.31	1.80
422	514	18.1	86.5	.97.8	41.45	1.40
434	520	15	98.2	.9639	47.87	1. **
445	537	22.4	9 3	.93a;	59.20	2.5e
457	545	32.5	94.3	.58E	55.19	2.00
465	568	45.1	£.3		-2.84	. 97
486	57 i	58.7	90.1		-24.8	.4
49)	582	71	9c. 4	1943	-17.4	.e:
500	594	BR.+	97.0	2193	-21.57	. 43

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 22.96 °C

	interv	41162	Coeff.Corr.		
°C	Z Réa	ct;on	r	E(hcal)	Ordre 1
319	.1	.3	-2782	4.12	-28.53
338	.2	.5	1435	-7.48	-194.37
342	.3	.8	.1996	11.37	-23.41
323	.5	1	739	-23.80	-222.46
365	.8	1.5	.4996	14.29	-29.96
376	1	2.2	-3253	11.89	-48.96
388	1.5	3.2	.0879	3.12	-41.89
395	2.2	4.6	.8951	22.36	-6.65
411	3.2	6.8	.9932	24.87	-4.93
422	4.6	16.1	.9946	29.57	-1.52
434	6.B	15	.9943	33.1	-,31
445	18. 1	22.4	.9959	34.4	82
457	15	32.5	. 9938	48.16	.95
468	22.4	45.1	.9975	48.79	1.65
488	32.5	58.7	.9972	47.85	1.56
491	45.1	71	.9943	58.92	2.86
583	58.7	88.4	.9911	87.37	2.93
514	71	86.0	.B449	165.57	4.99
526	88.4	98.7	8946	-185,77	-3.46
537	86.8	93	9863	-98.43	-1.18
546	99.7	94.3	9833	-67.2	24
368	93	95.3	. 3982	47.44	3.96
571	94.3	96.1	35°?	-173.17	-6.42
583	95.3	9ó.9	825;	-71.78	-2.46
594	96.1	97.6	- 4352	-9.61	16
	319 342 353 365 376 388 395 411 422 458 457 448 445 548 514 526 537 546 557 586 571 583	319 .1 3326 .2 342 .3 353 .5 365 .6 376 1 3880 1.5 3891 .5 3979 2.2 411 3.2 445 18.1 445 18.1 464 58.7 58.7 58.7 514 71 526 88.4 537 66.4 69.7 55.2 517 94.3 526 93 571 95.3 502 95.3	319 .1 .3 319 .2 .5 342 .3 .8 353 .5 1 365 .6 1.5 376 1 2.2 396 1.5 3.2 397 2.2 4.6 411 3.2 6.8 422 4.6 18.1 434 6.8 15 445 18.1 22.4 468 2.5 56.7 445 18.1 22.4 462 2.4.5 18.1 513 32.5 56.7 464 515.7 86.4 514 71 86.4 515 58.7 98.4 514 71 86.4 515 78.4 93 548 99.7 94.3 564 91.7 91.3 562 93 95.3 502 95.3 96.7<	319 .1 .3 .276: 319 .2 .5 ~1.435 342 .5 .1475 .1475 353 .5 1 ~739 355 .6 1.5 .4996 376 1 2.2 .3253 380 1.5 3.496 .9732 397 2.2 4.6 .8971 411 3.2 6.8 .9932 443 18.1 2.4 .9943 445 18.1 .9943 445 18.1 .9972 446 2.2.4 .9979 457 15 32.5 .9973 468 2.2.5 .9973 .9943 468 2.4 45.1 .9975 469 3.5 56.7 .9974 517 71 .9973 .9943 528 58.7 .9943 .9911 537 56.6 93 .9963	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

T*C	2 Reaction	۲	E(hcal)	Ordre n
296 338	.1 .5	. 128)	2.72	-56.5
397 342	.2 .B	022	- 6.	-116.85
319 353	.3 1	.2824	7.51	-58.53
338 365	.5 1.5	3453	-8.33	-121,91
342 376	.8 2.2	.5634	12.26	-48.87
353 388	1 3.2	.5767	18.62	-17.44
365 399	1.5 4.6	.354	18.25	-24.63
376 411	2.2 6.8	.9472	22.79	-6.83
389 422	3.2 18.1	.9936	27.8	-2.82
300 434	4.6 15	. 9968	30.1	-1.21
411 445	6.8 22.4	.9969	33.59	12
422 457	10.1 32.5	.9953	36.87	.56
434 465	15 45.1	.9961	41.5	1.14
445 488	22.4 55.7	. 995c	48.73	1.65
457 493	32.5 71	. 79	58.71	1.77
468 583	45.1 88.4	.9861	65.B7	2.34
488 514	58.7 Bo.E	.943e	185.13	3.46
491 526	71 98.7	127	-34.19	.16
583 537	B8.4 93	- 9530	-118.3	-1.79
514 548	B6.0 94.3	- 985	-74.60	52
520 568	98.7 95.3	8337	-2.48	1.79
557 571	93 96.1	. 336 :	61.3	4.21
54E 583	94.3 96.9	6643	-138.91	-4.54
568 594	95.3 97.6	7%0	-39.8)	-1.1

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 45.92 *C

,

anites o 7*C	es interva 1 Reac	iles tion	Comtt.Corr.	Ellical	Or dre s
29e - 341	.1	.8	.8993	2.17	-64.68
387 353	.2	1	. 8685	.24	-185.85
310 365	.3	1.5	.298	8.42	-51.43
338 376	.5	2.2	1955	-3.64	-92.35
34. 386	.8	3.2	.7193	15.75	-24.27
353 399	1	4.6	.6826	28	+13.65
365 411	1.5	6.9	-5254	13.94	-16.8
370 422	2.2	18.1	.9665	24.89	-4.3
38E 434	3.2	15	,9951	27.83	-2.13
399 445	4.6	22.4	.9973	38.91	76
411 457	6.8	32.5	.9968	34.77	.29
422 468	18.1	45.1	.9959	36.65	.82
434 488	15	58.7	.996c	42.61	1.29
445 49;	22.4	71	.998.	49.9	1.74
457 583	32.5	88.4	.98%	54.54	1.95
468 514	45.1	Bo.6	. 965.2	74.65	2.60
489 520	58.7	98.7		187,44	3.71
491 537	71	93	- 75.19	-123.67	-2.89
SR1 548	98. ×	94.3	-,9645	-64.95	91
514 568	8c.0	95.3	3276	-21.85	1.0)
526 571	98.7	90.1	. 1927	19.7	2.39
537 563	93	96.9	1777	-34.6	14
548 594	94.3	97.6	6725	+81.31	-2.37

F. Resultats cinétiques pour les intervalles de linéarité sélectionnés

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 22.96 °C

Limites des	s intervalles	Coeff.Corr.	Energie d'act	ivation Ordre de	réaction	Dérivée s	econde nulle
T°C	I Réaction	r	E(Kcal) s(E) Ordre n	s(n)	En	dE(Kcal)
457 488	32.5 58.7	.9972	47.85 6.1	2 1.56	.32	42.55	4.5
468 491	45.1 71	.9943	58.92 16.	32 2.86	.51	56.1B	2.74

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 34.44 °C

Linite T*:	es des C	interv Z Réa	alles -	Coeff.Corr.	Energie E(Kcal)	d'activation s(E)	Ordre de Ordre n	réaction s(n)	Dérivée s Em	seconde nulle dE(Kcal)	
474	A48	15	45.1	.9961	41.5	8.7	1.14		31.69	18.41	
445	488	22.4	58.7	.9986	48,73	5.78	1.65	.4	45	3.73	
457	491	32.5	71	.9944	58.71	16.14	1.77	.58	48.27	2.44	
468	583	45.1	88.4	.9881	65.87	27.73	2.34	.81	63.82	2.85	

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 45.92 *C

Limite T*(es des C	interv Z Réa	alles ction	Coeff.Corr. r	Energie E(Kcal)	d'activation s(E)	Ordre de Ordre n	réaction s(n)	Dérivée s Es	dE(Kcal)
434	488	15	58.7	.9966	42.61	8.51	1.29	.83	35.18	7.43
445	491	22.4	71	.9982	49.9	14.3	1.74	.54	47.45	2.45
457	583	32.5	88.4	.9896	54.54	28.81	1.98	.91	54	.54
468	514	45.1	86.6	.9652	74.85	167.91	2.66	4	72.55	1.5

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 57.48 *C

Limites des T°C	intervalles 2 Réaction	Coeff.Corr.	Energie E(Kcal)	d'activation s(E)	Ordre de Ordre n	e réaction s(n)	Dérivée s Em	econde nulle dE(Kcal)	
434 491	15 71	.996	43.76	15.44	1.44	.9	39. 27	4.49	
445 583	22.4 88.4	.9963	51.62	27.11	1.88	.85	51. 27	.35	
457 514	32.5 86.8	.9775	58.77	148.18	2.21	3.54	68. 27	1.5	

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 68.88 °C

	Limi	tes des	inter	alles	Coeff.Corr.	Energie	d'activation	Ordre de	réaction	Dérivée :	seconde nulle	
	T	•C	% Réa	iction	F	E(Kcal)	s(E)	Ordre n	s (n)	E	dE(Kcal)	
	434	583	15	92:4	.9946	44.96	27.65	1.59	1.13	43.36	1.6	
•	445	514	22.4	86.8	.9912	53.72	134.86	2.65	3.21	55.91	2.19	
	457	526	32.5	98.7	.9 379	63.91	157.89	2.52	3.69	68.73	4.82	

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 60.36 °C

Limites T°C	des	interv X Réa	alles	Coeff.Corr.	Energie E(Kcal)	d'activation s(E)	Ordre de Ordre n	réaction s(n)	Dérivée s Em	econde nulle dE(Kcal)	
434 51	4	15	86.8	.9917	46.25	123.51	1.74	3.83	47.45	1.2	
445 52	26	22.4	98.7	.9752	56.52	145.74	2.28	3.41	62.18	5.66	

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 91.84 °C

Linites des	intervalles	Coett.Corr.	Energie (d'activation	Ordre de	réaction	Dérivée s	econde nulle
T°C	% Réaction	r	E(Kcal)	s(E)	Ordre n	s(n)	Em	dE(Kcal)
434 526	15 98.7	.9839	47.87	135.76	1.95	3.2	53.18	5.31
445 537	22.4 93		59.26	148.65	2.56	3.26	59.82	18.56

G. Classement des intervalles de linéarité sélectionnés

AAB2487

۰.

N'	dE(Kcal)	Limites de T°C	: E(Kcal)	Ordre n	En dér.s.	: Coéf, r	s(E)	s(n)	Linéarité	IE/n
1	.35	445 - 503	: 51.62	1.68	51.27	: ,99629	27.11	.85	85.49	: 27.46
2	.54	457 - 503	1 54.54	1.98	54	: .98958	28.81	.91	273.18	1 27.55
3	1.6	434 - 583	\$ 44.96	1.59	43.36	: .99462	27.65	1.13	168.1	: 28,28
4	2.95	468 - 583	\$ 65.87	2.34	63.82	.98811	27.73	.82	278.36	: 28.15
5	2.44	457 - 491	\$ 58.71	1.77	48.27	: .99441	16.14	.57	51.43	: 28.65
6	2.45	445 - 491	1 49.9	1.74	47.45	9982	14.3	.54	13.9	: 28.68
7	2.74	468 - 491	1 58.92	2.86	56.18	: .99426	16.32	.51	47.78	: 28.6
8	3.73	445 - 488	\$ 48.73	1.65	45	: .99859	5.78	.4	3.26	\$ 29.53
9	4.49	434 - 491	43.76	1.44	39.27	: .99684	15.44	.9	55.83	1 38.39
18	4.5	457 - 488	1 47.85	1.56	42.55	: .99715	6.12	. 32	5.58	1 30.16
11	7.43	434 - 488	42.61	1.29	35.18	: .99658	8.51	.83	24.16	: 33.83
12	18.41	434 - 468	1 41.5	1.14	31.09	1 .99687	8.7	.92	31.46	: 36.4

H. Tableau des résultats cinétiques des cinq meilleurs intervalles de linéarité

CHOIX n*	*******)	2	3	4 	5
INTERVALLE DE LINEARITE						
Limites de température	•c	445 - 583	457 - 491	445 - 491	468 - 491	445 - 488
% Cumulé de réaction	1(%) 22	2.38 - 88.42	32.5 - 71	22.38 - 71	45.88 - 71	22.38 - 58.6
X de réaction concerné	DZ(2)	58.84	38.5	48.63	25.92	36.29
PARAMETRES CINETIQUES						
Energie d'activation	E(Kcal)	51.62	58.71	47.9	58.92	48.73
Ordre de réaction	n	1.88	1.77	1.74	2.86	1.65
Facteur de fréquence	Log A	14.85	13.97	13.79	15.83	13.61
PARAMETRES STATISTIQUES						
Coéfficient de corrélation	r .	.99629	.99441	.9982	.99426	, 99859
Ecart type sur l'Energie	s(E)	27.11	16.14	14.3	16.32	5.78
Ecart type sur l'ordre	s(n)	.65	.57	.54	.51	.4
Ecart E (dér sec) - E (F. # C.)	đE	.35	2.44	2.45	2.74	3.73
Paramètre de linéarité		85.49	51.43	13.9	47.78	3.26
Ecart (Braun & Burnham, 1986)	8	.126	.169	.171	.176	.196
Ecart (TMax exp TMax theor.)	dĩa	5.7	5.7	5.7	5.7	5.7
Paramètre de choix		21.6	57.1	48.8	74.6	79.5
E/n		27.45	28.65	28.67	28.6	29.53
E/Log A		3.67	3.63	3.61	3.72	3.58
*************************************	122242522	******	***************		********	****
% réaction au TMax		Z: 51.88	(1-2): 48.12		
TMax expérimental calculé (°C)		473,86				
TMax expérimental observé (*C)		444				
Différence TMax calculé - observé (*()	29.9				

ENREGISTREMENT: choix nº 1

- 49 -

ANNEXE IV.1.3. DETAIL DES OPERATIONS DE CALCUL CINETIQUE POUR LE PYROLYSAT S2' DES RESINES & ASPHALTENES

A. Tableau de Freeman & Carroll

$\begin{array}{c} \textbf{x} = \frac{1}{1} \\ \textbf{x} = \frac{1}{1} \\$										D (1/1	D	
**** FREEYAN & CARROLL **** **** Y = -(E/R) X + R **** Y = $-(E/R) X + R ****$ CODE AA82467 BITUME (ES') Y = $-(E/R) X + R ****$ Y = $\frac{D \ln(dZ/dT)}{D \ln(1-2)}$ Y = $\frac{D \ln(dZ/dT)}{D \ln(1-2)}$ 1 I T'C T'K C/Tr dZ I -Z (D (1/T)) D ln(1-Z) D ln(dZ/dT) X (E-5) Y = $\frac{1}{D \ln(1-2)}$ 2 1.35 6.32 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.25 0.8680 0)	(=		
***** Y = $-(E/R)$ X + n **** Y = $-\frac{1}{2}$ D $\ln(dZ/dT)$ D $\ln(dZ/dT)$ CODE AAB2467 BITUME (S2') Y = $-\frac{1}{2}$ D $\ln(1/T)$ D $\ln(dZ/dT)$ X (E-5) Y = $\frac{1}{2}$ 1 TYC TYK C/Tr dZ Z 1-Z (D (1/T) D $\ln(dZ/dT)$ X (E-5) Y = $\frac{1}{2}$ 122 1365 632 9 8.24 8.24 97.76 1.425-5 8.6002 8.8002 I 8.60 8.60 123 1376 644 12 8.32 8.55 97.45 1.425-5 8.6002 8.8002 I 448.76 -98.67 123 1376 644 12 8.32 8.25 97.45 1.425-5 8.6022 -8.383 3304.45 -77.19 124 1302 645 108 1.79 97.21 1.335-5 8.6022 -8.383 3304.45 -77.19 124 1302 657 9.53 9.52 1.285-5 8.6122 -8.214 61.24 1.23.73 125 1.386 6.79 1.2										D ln(l·	-1)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	++++ FREEMAN	6 641	980LL ***	•	•	++++ Y = -(E/R) X	+ <u>F</u> ####					
$\begin{array}{c} \text{CODE } \text{AAE2467} & \text{EITURE (ES')} & \text{Vertex} \\ \hline \\ 1 & \text{ITC} & \text{TK} & \text{C/Tr} & \text{d2} & \text{Z} & 1-2 & \text{I} & \text{D} (1/7) & \text{D} \ln(1-2) & \text{D} \ln(d2/d7) & \text{X} (E-5) & \text{V} & \text{I} \\ \hline \\ 2 & \text{I} & \text{ISC} & \text{ISS} & \text{633} & \text{C} & \text{I} & \text{6.02} & \text{E.00} & \text{IBC.02} & \text{I} & \text{ASZ-5} & \text{B.0802} & \text{B.0802} & \text{I} & \text{B.02} & \text{B.02} \\ \hline \\ 2 & \text{I} & \text{ISC} & \text{633} & \text{F} & \text{B.24} & \text{E.24} & \text{P7}, 76 & \text{I} & \text{ASZ-5} & \text{B.0802} & \text{B.0802} & \text{I} & \text{B.02} & \text{B.02} \\ \hline \\ 2 & \text{I} & \text{ISC} & \text{644} & \text{I} & \text{ISC} & \text{ISS} & \text{P7, 55} & \text{I} & \text{ASZ-5} & \text{B.0802} & \text{B.0802} & \text{I} & \text{B.02} & \text{B.08} \\ \hline \\ 2 & \text{I} & \text{ISC} & \text{644} & \text{I} & \text{ISC} & \text{ISS} & \text{P7, 56} & \text{I} & \text{AZZ-5} & \text{B.0802} & \text{-B.0803} & \text{B.0804} \\ \hline \\ 2 & \text{ISC} & \text{ISS} & \text{ISC} & \text{I} & \text{ISC} & \text{I} & \text{ISC} & \text{I} & \text{ISC} & \text{I} & \text{ISC} \\ \hline \\ 2 & \text{ISC} & \text{644} & \text{I} & \text{I} & \text{B.45} & \text{I.80} & \text{P9, 02} & \text{I} & \text{I} & \text{I} & \text{ISZ-5} & \text{B.0802} & \text{-B.0803} & \text{I} & \text{ISC} & \text{-P1, 71} & \text{I} \\ \hline \\ 2 & \text{ISC} & \text{655} & \text{33} & \text{I} & \text{.P7} & \text{P7, 72} & \text{I} & \text{I} & \text{I} & \text{I} & \text{ISZ-5} & \text{B.0802} & -\text{B.2364} & \text{I} & \text{I} & \text{I} & \text{ISC} & \text{-77, 19} & \text{I} \\ \hline \\ 2 & \text{ISC} & \text{ISC} & \text{ISC} & \text{I} & \text{ISC} & \text{P7, 72} & \text{I} $										D ln(d	2761)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CODE AAB2467	· 3	NITUME (S.	21)						Y =		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										10 in (1-2)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,		v 1	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$: I : T'C	Т*К	C/Tr i	dZ	2	1-Z (D(1/i)	D ln(1-Z)	D In(d2/dr)	ì	X (E-D)	، ۲ 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						100 00 L 1 457 5	0 0000	B G307	1	p pp	B 82 :	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26 359	632	K :	0.00	6.00	106.06 11.402-5	0.0000	A 0303	÷	B 62	A. 80 1	:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 : 365	632	91	8.24	6.24	77.70 (1.421-3 00 (5) 1.421-5	0.0000	-9 2277	÷	AAD 74	-92.47 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22 371	644	12 (0.32	6.55	77.43 · 1.462-J	0.003.	-10.2075	1	7004 45	-77 19 1	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23 376	649	1/ :	0.45	1.00	99.00 1 1.3/2-3	0.0041	-0.3403	÷	145 44	-78 BE 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24 382	655	38	8.79	1.77	76.21 ; 1.33E-3	0.0000	-0.3744	;	100.49	-27 08 1	i.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25 386	661	38	1.60	2.19	9/.21 + 1.33E*3	0.0102	-0.2304	;	127.90	-15 23 3	i.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 394	667	46 1	1.21	4.00	96.68 i 1.362-3	0.0150	-0.2144	ξ.	P1 20	-17 48 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 399	672	57 1	1.50	2.20	94.36 (1.262-3	0.0100	-0.2144	1	44 E4	-9 F4 !	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 425	678	69 1	1.62	7.32	92.68 1.262-3	6.6174	-8.1711	1	55 24	-5 47	÷
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29 411	684	76	2.65	Y. 38	76.62 1.246-3	B. 0224	-0.1220	;	47 40	-7.02	i.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3E 416	689	75 }	2.58	11.85	86.12 / 1.22E-3	0.6.04	-16.1772	-	75 10	-4 84	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31 422	695	112	2.95	14,83	85.1/ 1.262-5	0.0340	-6.1040	1	20.10	-7.7	÷.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32 428	76:	128	3.37	16.20	81.80 : 1.182-5	8.0404	-10.1335	1	47.17	-7.70	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 33 434	707	151	3.98	22.18	77.82 : 1.16E-5	8.8475	-8.1652	1	23.23	-2.72	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$: 34 : 439	712	179	4.71	26.89	73.11 / 1.14E-5	0.0615	-8.1/81	1	18.20	-2.12	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$: 35 : 445	715	202 :	5.31	32.21	67.79 1.12E-5	0.0755	-0.1209	1	14.60	-1.00	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36 451	724	221 ;	5.82	36.63	61.97 : 1.18E-5	6.6875	-8.8899	1	12.36	-1.64	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 37 1 457	732	244 1	6.43	44.46	55.54 : 1.09E-5	8. 12 95	-8.0790	1	9.93	-16.92	t
$\begin{array}{cccccccccccccccccccccccccccccccccccc$: 32 : 462	735	26ċ ;	7.01	51.46	48.54 ; 1.87E-5	0.1346	-8.6363	;	7.94	-16.64	÷
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39 468	741	284 1	7.46	58.94	41.86 : 1.05E-5	8.1674	-0.0655	÷	6.29	-8.39	÷
$\begin{array}{cccccccccccccccccccccccccccccccccccc$: 42 : 474	747	272 ;	7.1:	66.85	33.95 1.84E-5	e. 1922	6.62556	ł	5.45	8.27	÷
$\begin{array}{cccccccccccccccccccccccccccccccccccc$: 41 : 482	753	245 ;	6.45	72.52	27.50 1.02E-5	8.2126	0.0972	1	4.84	8.46	÷
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 42 : 485	758	288 :	5.48	77.98	22.82 : 1.01E-5	8. 2222	0.1637	1	4.53	8.74	÷.
1 44 447 770 140 1 3.70 06.57 13.43 0.962-5 0.2546 0.1646 1 3.63 0.72 1 1 45 523 776 116 1 3.06 07.62 10.38 0.962-5 0.2561 0.2436 1 3.73 0.94 1 1 46 506 761 96 2.52 92.15 7.05 0.952-5 0.2793 0.1892 3.37 0.66 1 1 751 751 757 74 1.95 94.18 5.92 0.273 0.1892 3.37 0.66 1 0.66 1 0.2651 0.2436 3.27 0.91 1 1.95 94.18 5.92 0.2773 0.1892 3.27 0.91 1 1.95 94.18 5.92 0.2574 0.2554 0.2436 3.27 0.91 1 4.61 5.63 4.37 0.922-5 0.2597 0.2436 3.27 0.91 1 4.61 5.65 15.21 5.13 82.42 1.57 0.57	: 43 : 491	764	178 :	4.69	B2.67	17.33 ; 8.99E-5	8.2394	6.1556	1	4.14	0.65	÷
: 45 : 523 776 116 : 3.86 87.62 18.38 : 8.965-5 8.258: 8.2436 : 3.73 8.94 : 3.73 8.94 : 3.73 8.94 : 3.75 : 46 : 506 76: 96 : 2.53 77.15 7.85 : 8.955-5 8.2773 8.1892 : 3.37 8.66 : 3.37 8.94 : 66 : 3.37 8.965-5 : 47 : 514 757 74 : 1.95 94.18 5.92 : 8.935-5 8.2654 8.2623 : 3.37 8.931 : 3.37 8.91 : 3.37 8.91 : 3.37 8.91 : 3.37 8.91 : 5 8.2654 8.2683 : 3.27 8.91 : 3.37 8.91 : 5 8.2654 8.2683 : 3.27 8.91 : 5 8.91 : 5 8.2654 8.2683 : 3.27 8.91 : 5 8.161 : 5 8.277 8.2634 : 3.27 8.91 : 5 8.91 : 5 8.2654 8.2683 : 3.27 8.91 : 5 8.91 : 5 8.91 : 5 8.2651 : 3.377 8.2632 : 3.27 8.251 : 5 8.51 : 5 8.51 : 5 8.251 : 5 8.251 : 5 8.251 : 5 8.251 : 5 8.251 : 5 8.251 : 5 8.251 : 5 8.251 : 5 8.251 : 5 8.252 : 5 8.252 : 5 8.252 : 5 8.252 : 5 8.252 : 5 8.252 : 5 8.252 : 5 8.252 : 5 8.252 : 5 8.252 : 5 8.252 : 5 8.252 : 5	44 497	77C	148 :	3.50	86.57	13.43 8.985-5	e. 2546	8.1646	1	3,83	6.72	÷
46:508 78: 96:2.53 92.15 7.65:8.955-5 0.2793 0.1892 3.37 0.66:3 14:514 757 74:1.95 94.18 5.92:8.935-5 0.2793 0.1892 3.27 0.91: 14:520 777 1.95 94.18 5.92:8.935-5 0.2793 0.2803 3.27 0.91: 14:520 777 49:1.29 95.63 4.37:8.925-5 0.2797 0.2436 1.327 0.91: 14:526 777 49:1.29 96.92 3.85:8.925-5 0.3927 0.2436 1.259 0.45: 15:52:531 862-38:1.02 97.92 2.081:8.072-5 0.3927 0.2542 2.228 0.65: 15:1:537 81:2 32:8.097.92 2.081:8.072-5 0.3927 0.2542 2.288 0.65: 15:1:537 81:2 81:497.92 2.081:8.072-5 0.3927 0.2542 2.288 0.333 15:2:543 81:2 81:497.973 2.129 0.852-5 0.5173 0.1719 1.747 0.71 15:3:546 81:2 82:497.973 2.297 0.852-	: 45 : 523	T 76	116 1	3.86	89.62	10.38 \ 0.96E-5	0.258:	8.2436	1	3.73	6.94	1
147: 514 757 74: 1.95 94.12 5.92: 8.932-5 8.2854 8.2683 1 3.27 8.91: 146: 522 793 58: 1.53 95.63 4.37: 2.925-5 8.2977 8.2436 1 3.27 8.91: 146: 522 793 58: 1.53 95.63 4.37: 2.925-5 8.2977 8.2436 1 3.27 8.61: 144: 526 797 49: 1.27 96.92 3.86: 8.926-5 8.3476 0.6666 2.599 8.45: 152: 531: 862-3 38: 1.02 97.92 2.080: 8.892-5 0.3927 8.2542 2.288 8.65: 1.513 8.1719 1.708 9.33 151: 537 81.22 12: 42: 8.862-5 8.5133 8.1719 1.708 9.33 152: 543 81:2 12: 8.42 99.71 8.297 8.862-5 8.5193 8.4212 1.47 8.711 153: 546 82.1	: 46 : 508	78:	96 ;	2.53	92.15	7.85 : 0.952-5	B. 2793	0.1892	ł	3.39	8.65	1
:4E::522 793 5E::1.53 95.63 4.37:2.92-5 8.2977 8.2436 :3.27 8.8: :49::526 797 49::1.29 96.92 3.85:2.91-5 8.3476 8.1656 :2.59 6.45: :52::531 86-38 1.02 97.92 2.86:2.92-5 8.3476 8.2542 :2.29 6.65: :51::537 81:2 32:2.96 2.86:2.92-5 8.3927 8.2542 :2.29 6.65: :51::537 81:2 32:2.98 8.66:5 8.3927 8.2542 :2.29 6.65: :51::537 81:2 32:2.98 8.66:2.977-5 0.5921 8.1719 1.708 8.33 :52::543 81:2 2:55:99.32 0.652 8.577-5 0.5921 8.4212 1.47 8.71 :53::546 821:15 8.42 99.71 8.25* 0.8522 8.3365 1.602 8.37 :54::554 627 8:22:195 6.62:2 8.425 1.2994 8.425 1.602 8.37 :55::568 833 3:8.26 182.62 8.822 8.9926	1 47 1 514	757	74 ;	1.95	94.12	5.98 : 8.932-5	B. 2854	8.2683	1	3.27	B. 91	5
147: 526 777 49: 1.29 96.92 3.85: 2.91E-5 8.349E 8.1666 2.59 8.45: 152: 531 82- 38: 1.02 97.92 2.08: 2.89E 8.977- 8.2542 2.28 8.65: 151: 537 81:2 32: 8.54 9.79 2.08: 8.897-5 8.5173 8.1719 1.78 8.33: 152: 1543 81c 21: 8.55 99.76 1.24: 8.862: 8.571 8.4719: 1.77 8.33: 152: 543 81c 21: 8.55 99.71 8.66: 8.575-5 8.5721 8.4212: 1.47 8.71 153: 546 821: 15: 8.42 99.71 8.25: 8.6522 8.3365 1.68 8.37: 154: 554 627 8: 6.21: 95.95: 6.852 8.3365 1.68 8.42: 9.92: 8.62: 8.62: 8.35: 1.68 8.62: 8.35: 1.68 8.62: 8.35: 1.68 8.42:	48 528	793	58 ;	1.53	95.63	4.37 : 0.92E-5	8.2997	8.2436	1	3.27	6.81	÷
1 52 : 531 B2- 38 : 1.02 97.92 2.08 : 0.892-5 0.3927 8.2542 : 2.28 0.45 : 1 51 : 537 0:2 32 : 0.54 95.76 1.24 : 0.865-5 0.5173 0.1719 : 1.70 0.33 : 1 52 : 543 B1c 21 : 0.55 97.32 0.66 : 0.675-5 0.5921 0.421 1.70 0.33 : 0.33 : 1 53 : 546 0:1 15 : 0.42 97.71 0.272 0.085-5 0.6322 0.355 : 1.00 0.35 : 1.00 0.35 : 1 54 : 554 0:27 0 3 : 0.22 97.92 0.06 : 0.682-5 0.6322 0.336 : 0.425 : 0.482 : 0.426 : 0.46 : 0.482 : 1 55 : 560 0:33 3 : 0.26 102.02 0 0.02 : 0.632-5 0.8020 0.9920 : 0.802 : 0.802 0.9920 : 0.802 0.802 : 0.802 0.82 :	49 : 526	793	49 1	1.29	96.92	3.05 : 0.9:E-5	0.3498	2.1656	1	2.59	8. 45	÷
51:537 8:2 32: 8:54 96.76 1.24: 8:865-5 8:5173 8:1719 1.70 8:33: 52: 543 8:e 21: 8:55 99.32 8:65: 8:572-5 8:5921 8:4212 1.47 8:711 53: 548 821 15: 8.42 99.71 8:27: 0.852-5 8:522 8:3355 1.602 8:35 54: 554 657 8: 2: 15: 8.42 99.71 8:27: 0.852-5 8:522 8:3355 1.602 8:35 54: 554: 657 8: 2: 15: 8.42 99.71 8:27: 0.852 8:652 8:656 8:652 8:656 8:46: 8:55 1.602 8:37: 1.602 8:37: 1.554 8:65 8:46: 1.2974 8:4265 1.626 8:46: 1.554 5:66 8:33 3: 8:26 1.82 8:632 8:9828 8:862 8:862 8:862 8:862 8:862 8:862 8:862 8:862 8:862 8:862 8:862	1 57 1 520	87-	38	1.62	97.92	2.08 ; C.89E-5	0.3927	8.2542	1	2.29	8.65	1
151 543 812 21 8.55 97.32 8.65 8.575-5 8.5921 8.4212 1.47 8.71 153 546 821 15 8.42 97.71 8.27 8.685-5 8.6822 8.3365 1.68 8.33 154 554 627 8 2.21 97.52 6.65 2.645-5 1.2974 8.4255 1.68 8.33 154 554 627 8 2.21 97.52 6.05 2.645-5 1.2974 8.4255 1.68 6.46 1.47 155 568 833 3 8.26 182.62 8.82-5 8.622 8.9928 8.62 8.62 8.62	1 51 1 577	8:2	30 :	P. 54	95.76	1.24 1 B.86E-5	0.5193	8.1719	÷	1.70	8.33	ł
151 546 827 81.2 97.71 8.27 8.8522 9.3365 1.60 8.35 151 151 8.42 97.71 8.27 8.8522 9.3365 1.60 8.35 154 1554 627 8 6.21 97.92 8.62 8.42 97.71 154 1554 627 8 6.21 97.92 8.62 8.42 9.42 155 1562 833 3 8.25 12.82 8.0222 8.9828 8.00 8.02 155 1562 833 3 8.25 12.82 8.0222 8.9828 8.00 8.02	1 57 1 547	81-	21 1	0.55	99.30	8.65 1 8.675-5	0.5921	8,4212	ł	1.47	8.71	ł
1 55 1 554 627 B : 0.2: 95.92 8.05 1 0.64E-5 1.2994 8.4265 1 0.65 0.48 : 1 55 1 568 833 3 1 8.25 100.82 0.02 0.632-5 0.0002 8.9828 1 0.00 0.02 :	1 52 1 545	871	15	8.42	99.71	8.25 6.86F-5	0.8522	0.3365	;	1.68	8.39	;
1 55 1 568 833 3 1 8.25 182.82 8.82 8.82 5 8.8222 8.9328 1 8.82 8.82 1	1 JJ 1 J=C 1 5; 1 55;	6011 6011	10,1	8	99,00	8.85 1 8.84F-5	1,2994	0.6256	1	2.65	e. 48	÷
	1 55 1 510	017	7 :	0.25	182,82	8.82 : 8.835-5	2.6232	8.9928	1	8.83	8.65	÷
			، د 									==

B. Courbe de pyrolyse normalisée

	8	2	4	. 6	6	18	12	14	16	16	28	2 HC / 11 *C
365	;+		+				ŧ					
370	:++++											
366	:******	***										
399	:+++++	******										
411	:++++++	*******	****									
422	:+++++	*******	********	++								
434	:+++++	*******	*******	********	+++							
445	:*****	*******	*******	*******	*******	*****						
457	:******	*******	*******	*******	********	*********	*****					
465	:******	*******	********	*******	*******	********	*******	******				
482	:******	*******	********	*******	********	*********	*******	***				
491	;++++++	*******	******	*******	*******	******						
583	******	********	********	********	•							
514	******	*******	******									
515	******	*******										
537	; ******	***										
54E	:*****											
562	:+											
	:											
T°C	V											

- 50 -

C. Résultats cinétiques pour les intervalles [I-(I+1)] et [(I-1)-(I+1)]

CODE AA	B2457	BIT	Ur?	E (S2')						
: Tran	che I		;	Interva	alle de 11.	48 °C	ł	Interva	lie de 17.22	•0
11	T"C	Z (Z)	1	I-1/ I	E (Kcal)	n	;	1-1/1+1	E (Kcal)	n
22 :	359	B. 02	;	19/22	e. 82	0.00	;	19/21	9.92	8.93
21 1	365	8.23	4	20/21	8.92	8.82	ł	20/22	40.87	6.63
22	371	8.55	:	21/21	42.87	6.09	1	21/23	42.47	-2.87
: 23 :	376	1,82	ł	22/23	19.65	-47.09	1	22/24	14.44	-57.46
24	382	1.79	ł	23/24	9.21	-63.CE	÷	23/25	47.83	-8.72
25 :	368	2,79	1	24/25	243.82	135.80	ł	24/25	177.38	83.17
; 26 ;	394	4.02	ł	25/2c	61.82	16.67	ł	25/27	39.53	3.56
27 :	399	5.50	1	26/27	14.31	-7.75	÷	26/28	26.64	-1.72
: 28 :	485	7.32	ł	27/26	45.54	5.82	ł	27/29	68.29	10.73
29 1	411	9.37	1	28/29	92.30	19.63	1	28/30	24.88	-8.85
: 32 :	41E	11.87	1	29/32	-20.68	-12.87	1	29/31	4.11	-4.6÷
1 31 1	422	14.82	1	32/31	52.73	4.49	1	38/32	51.88	4.32
32 1	428	16.19	:	31/32	58.57	4.11	1	31/33	25.39	-8.89
33 1	434	22.17	1	32/33	-8.31	-3.36	ł	32/34	18.30	-1.90
1 34 1	439	26.8B	÷	33/34	23.56	-8.56	1	33/35	37.30	1.16
1 35 1	445	32.28	1	34/35	65.66	3.30	1	34/36	57.94	2.63
1 36 1	451	36.23	1	35/36	46.64	1.88	1	35/37	28.31	8.59
1 37 1	457	44.45	1	36/37	6.13	-8.50	1	36/38	16.18	-8.84
: 36 ;	462	51.46	1	37/3E	26.34	8.41	:	37/39	28.00	8.48
1 39 1	469	58.94	:	38/39	32.15	0.56	ł	36/48	66.72	1.94
1 42 1	474	66.25	:	39/42	155.32	4.52	÷	39/41	115.22	3.42
1 41 1	482	72.50		48/41	63.72	2.81	1	48/42	96.07	2.97
42 1	485	77,92	-	41/42	172.68	4.66	1	41/43	49.72	1.74
; 43 ;	491	82.67	1	42/43	-44.39	-8.27	1	42/44	-5.31	8.59
; 44 ;	497	66,56	1	43/44	47.71	1.64	1	43/45	122.24	3.13
; 45 ;	583	67.62	;	44/45	415.16	8.78	ł	44/46	-54.69	-8.23
46 1	588	92,15	1	45:46	-158.75	-2.84	4	45/47	-44.60	8,86
: 47 :	514	54.12	÷	46/47	361.72	7.19	ł	46/46	65.57	1.87
48 ;	522	95.62		47/48	-98.11	-8.71	÷	47/49	-128.8ć	-1.19
1 49 1	526	96.91	1	48/49	-137.59	-1.32	ł	48/50	-49.19	-8.81
	571	C7 0:	÷	45 /50	107 00	1 07	÷	17/61		0 01

D. Distribution des valeurs de *E* et *n* en fonction de la température, pour les intervalles [I-(I+1)]

Energie d'activation (E (Kcal)	Ordre de réaction in
	-8 -6 -4 -2 8 2
······································	357 :
5 :	365 :
	371 :
C :*********	376 :
	362 :
÷ :************************************	388 :***********************************
·L ; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	394 :************************************
· : *******	399 :*
5 : : *** * * * * * * * * * * * * * * *	425 :************************************
·	411 :===================================
ò ;	416 :
	422 (***********************************
- :***********************	428 :************************************
4 :	434 :****************
9 :####################################	437 :****************************
5 ****************************	445 ***********************************
: :*********************	451 :**********************************
3 (****	457 :*******************************
	462 :***************************
£ :************	468 :************************
	474 :***********************************
2 :********************************	452 :***********************************
5 :************************************	485 :************************************
::	471 :====================================
*************	497 :************************************
3	563 :************************************
5 1	585 :******************
- 4 :************************************	514 :************************************
3 :	528 :******************************
	526 :*******************
	51: :::::::::::::::::::::::::::::::::::
· · · · · · · · · · · · · · · · · · ·	
· · ·	

- 51 -

E. Resultats cinétiques pour les intervalles de linéarité sélectionnés

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 22.96 °C

Limites de	es intervalles	Coeff.Corr.	Energie d	activation [Ordre de	réaction	Dérivée se	conde mulle
T°C	2 Réaction	F	E(Kcal)	s(E)	Ordre n	s(n)	En	d£(Kcal)

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 34.4399 °C

Limites des	intervalles	Coeff.Corr.	Energie d'activation		Ordre de	réaction	Dérivée seconde nulle		
T*C	X Réaction	r	E(Kcal)	s(E)	Ordre n	s(n)	En	dE(Kcal)	
416 451 439 474	11.9 36 26.9 66.1	.9737 .9664	34.59 36.98	20.99 40.58	.99 1.1	2.65 1.55	34.29 35.1	.] .85	

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 45.9199 °C

Limites des	intervalles	Coeff.Corr.	Energie c	l'activation	Ordre de	réaction	Dérivée seco	nde mulle
T°C	% Réaction	r	E(Kcal)	s(E)	Ordre n	s(n)	Es	dE(Kcal)
416 462	11.9 51.5	.9811	33.72	28.18	.85	2.33	29.44	4.26
426 474	16.2 66.1	.962	31	37.75	.7	1.98	24.25	6.75

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 57.3999 °C

Limites de T°C	s intervalles % Réaction	Coeff.Corr. r	Energie E(kcal)	d'activation s(E)	Ordre de Ordre n	réaction s(n)	Dérivée : Es	d£(Kcal)	
394 45:	4 38	.9767	31.38	27.6	.74	6.B4	25.63	5.75	
416 474	11.9 66.1	.9646	34.23	33.79	.89	2.22	38.83	3.2	
418 485	16.2 78	. 7622	33.93	45.96	.99	2.68	34.29	.36	

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 68.6799 *C

Limites des	intervalles	Coeff.Corr.	Energie (i'activation	Ordre de	réaction	Dérivée se	conde nulle
T'C	% Reaction	r	E(Kcal)	s(E)	Orgre n	s(n)	Em	dE(Kcal)
374 462	4 51.5	.9829	31.27	25.85	.7	6.21	24.25	7.01
416 485	11.9 78	.985	35.20	44.64	1.87	2.19	37.86	1.78

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 88.3599 °C

Limites des intervalles T'C Z Réaction		Coeff.Corr. r	Energie E(Kcal)	d'activation s(E)	Ordre de Ordre n	reaction s(n)	Dérivée s Es	dE(Kcal)	
394 474	4 6c.1	.9535	31.41	34.1	.75	5.75	25.9E	5.42	
425 485	7.3 76	.9667	38.25	45.74	.77	5.13	26.67	3.56	
416 497	11.9 8c.6	.9663	35.91	46.37	1.16	2.05	48.1E	4.27	

CALCUL DES PARAMETRES CINETIQUES POUR UN INTERVALLE DE 91.6398 °C

Limites des	intervalles	Coeff.Corr.	Energie	d'activation	Ordre de	réaction	Dérivée s	econde nulle	
T°C	% Réaction	r	E(Kcal)	s(E)	Ordre n	sin)	Ég	dE(Kcal)	
3°~ 485	4 78	.954E	31.84	43.27	.85	5.41	38.48	1.36	
425 4°7	7.3 68.6	.969c	32.63	46.67	.89	4.79	38.63	P	

F. Classement des intervalles de linéarité sélectionnés

NEC487 DETUME (SC)) LASSEMENT DES INTERVALLES DE LINEARITE (coéf. Dér. Sec.: 34635.2) TMax: 468.12												
N*	dE(Kcal)	Limites de T°C	: E(Kcal)	Ordre n	En dér.s	: Coéf. r	5(E)	s(n)	Linéarité : E/n			
		485 - 497	: 38.83	.89	36.83	: .9696	46.67	4.79	6795.B9 : 34.64			
	.3	416 - 451	: 34.59	.99	34.29	.97369	28.99	2.65	1463.45 : 34.94			
3	.36	428 - 485	: 33.93	.99	34.29	96224	48.86	2.08	3837.5 : 34.27			
۵ ۵	. 85	439 - 474	: 38.98	1.1	38.1	: ,96636	42.56	1.55	2114.88 : 35.44			
5	1 74	394 - 485	31.B4	.88	30.48	: ,98482	43.27	5.41	3553.5 : 36.1B			
	1.30	A16 - 495	35.28	1.07	37.06	: .98503	44.64	2.19	1463.49 : 32.97			
7	7 2	416 - 474	: 34.23	. 69	38.83	: .98461	33.79	2.22	1154.47 : 38.24			
ò	3.50	485 - 4F5	12.25	.77	26.67	: .96672	45.74	5.13	7829.03 : 39.29			
ۍ د	4.27	416 - 497	: 35.91	1.16	42.16	98627	46.37	2.25	1385.16 : 38.96			
10	4.20	416 - 467	13.72	.85	29.44	: .9811	22, 18	2.33	BB2.67 : 39.67			
11	5.47	10 401	1 31 41	.75	25.98	: 98345	34.1	5.75	3245.03 : 41.88			
11	J.43 5 75	794 - 451	: 71.75	.74	25.63	: .97672	27.6	6.64	4394.89 : 42.41			
12	1.75	100 - 101	• 7'	.,	24.74	96223	37.75	1.98	2635.27 : 44.29			
13	7.83	394 - 462	: 31.27	.7	24.24	.98886	25.88	6.21	3276.27 : 44.67			

G. Tableau des résultats cinétiques des cinq meilleurs intervalles de linéarité

0:01) n*		1	2	3	4 ===============================	5
INTERVALLE DE LINEARITE						
Limites de temperature	*C	416 - 451	416 - 485	416 - 474	416 - 497	416 - 452
X Cusulé de réaction	2(2) 1	.BE - 35.23	11.5E - 77.9B	11.89 - 66.85	11.85 - 65.57	11.88 - 51.40
% de réaction concerné	D2 (%)	26.15	66.1	54.17	74.69	39.52
FARAMETREE CINETIQUES						
Energie d'activation	E(hcal)	34.59	35.28	34.03	35.9:	33.72
Orone de réaction	ħ.	.99	1.87	.B⊂	1.1ć	.E:
Facteur de fréquence	Log A	:2.86	12.90	18.59	13.95	18.97
PARAMETREE STATISTIQUES						
Coefficient de corrélation	T	.973e°	.96523	98461	.98£17	.9811
Ecart type sur l'Energie	s(E)	22.99	44.04	33.75	46.3	22.18
Ecart type sur l'ordre	s(n)	2.55	2.19	2.22	2.25	2.33
Ecart E (der sec) - E (F. & C.)	dĩ.	.3	1.78	3.2	4.27	4.28
Paramètre de libéarité		14c3.45	1463.45	1154.47	1325.16	835.67
Ecart (Braun & Burnham, 1986)	£		.269	.629	.25	.625
Ecant (TMap exp TMap théor.)	dīs	11.5	5.7	11.5	5.7	11.5
Paramétre de choix		365:.8	92	2398	55.6	3793.3
E/n		34.94	32.97	36.23	38.95	39.67
E/Log 4		3.1E	3.21	3.12	3.27	3.1
					288222222222222222222	
Z reaction au TMax		2 55.94	(1-2)	41.85		
(Max experimental calculé (*C)	*	465.12				
HTAR EXPERIMENTAL ODSERVE ("C		K				
Différence Max calculé - observé (*)	.i	4c5.1				

ENREGISTREMENT: choix p1 4

ANNEXE IV.2. REPRODUCTIBILITE DES PARAMETRES CINETIQUES DE LA PYROLYSE

<u>AAB 0505</u>	PARAMETR	ES CIN	ETIQUES	RAP	PORTS	AJUSTEMENT THEORIQUE				
Date Analyse	E (Kcal)	n	Log A (s ⁻¹)	E/n	E/Log A	e	dT _m (°C)	dE (Kcal)		
18-01-85 22-01-85 23-01-85 24-01-85 25-01-85 28-01-85 29-01-85 31-01-85 01-02-85 05-02-85 22-02-85	25.53 26.45 31.02 26.55 24.16 26.30 27.07 25.66 25.80 29.53 25.63	1.02 1.14 1.04 1.02 0.83 0.97 1.14 1.00 1.01 1.20 1.00	7.93 8.02 9.78 8.25 7.90 8.15 8.20 8.06 8.05 8.88 8.04	25.03 23.20 29.82 26.03 29.10 27.11 23.74 25.66 25.54 24.85 25.63	3.22 3.29 3.17 3.21 3.05 3.22 3.30 3.18 3.20 3.36 3.18	0.26 0.09 0.16 0.22 0.26 0.18 0.07 0.08 0.16 0.22 0.09	11 0 0 11 11 11 11 0 0 11 0 0	2.62 0.19 6.93 1.57 3.56 2.47 0.36 0.11 1.74 0.38 0.35		
Nombre N Moy. X Ec.t. s Ec.t. s%	11 26.70 1.95 7.29	11 1.03 0.10 9.63	11 8.30 0.56 6.74	11 25.97 2.03 7.80	11 3.21 0.08 1.21					

ANNEXE IV.2.1. REPRODUCTIBILITE DES RESULTATS CINETIQUES EN CYCLE I

LEGENDE DES ANNEXES IV.2.1 & 2 - Paramètres cinétiques des courbes de pyrolyse Rock Eval d'échantillons témoins. l'échantillon AAB 0505 a été analysé 11 fois avec le cycle I (défini au tabl.II.3.1). L'échantillon REF 1913 a été analysé 29 fois avec le Rock Eval équipé du module pour la détermination du COT et le cycle II (défini au tabl.II.3.1). Paramètres cinétiques: énergie d'activation E, ordre de réaction n, facteur de fréquence Log A; Rapports E/n et E/Log A; Paramètres d'ajustement de la courbe théorique à la courbe expérimentale e, dT_m et dE. Ecart type s et écart type relatif s^{\$}.

ANNEXE IV.2.2. REPRODUCTIBILITE DES RESULTATS CINETIQUES EN CYCLE II

<u>REF 1913</u>	PARAMETI	RES CIN	ETIQUES	RAPP	ORTS	AJUSTE	MENT TI	HEORIQUE
Date Analyse	E (Kcal)	n ·	Log A (s ⁻¹)	E/n	E/Log A	e	d⊺ _m (°C)	dE (Kcal)
12-07-85 15-07-85 22-07-85 23-07-85 23-07-85 30-07-85 31-07-85 01-08-85 05-08-85 05-08-85 06-08-85 07-08-85 09-08-85 14-08-85 19-08-85 21-08-85 22-08-85 22-08-85 22-08-85 22-08-85 22-08-85 22-08-85 22-08-85 10-09-85 11-09-85	43.07 40.42 39.45 39.10 39.49 38.10 36.49 35.72 37.08 40.85 37.59 32.53 39.74 38.04 37.95 40.57 39.54 37.58 40.57 39.54 37.58 40.49 37.89 37.78 36.98 38.57 37.38	1.20 1.21 1.20 1.22 1.25 1.11 1.05 1.05 1.05 1.10 1.15 1.12 1.02 1.39 1.11 1.16 1.19 1.27 1.08 1.21 1.16 1.11 1.11 1.11 1.18	13.16 12.32 12.02 12.06 11.90 11.84 11.47 11.23 11.52 12.54 11.66 10.50 12.02 11.84 11.71 12.44 11.99 11.71 12.46 11.83 11.83 11.83 11.58 11.94	35.89 33.40 32.87 32.30 31.59 34.28 34.75 34.20 33.71 35.52 33.56 31.89 28.59 34.27 32.71 34.09 31.13 34.79 33.46 32.66 34.03 33.31 32.68 33.67	3.27 3.28 3.28 3.26 3.31 3.21 3.18 3.18 3.21 3.25 3.22 3.09 3.30 3.21 3.24 3.26 3.29 3.21 3.24 3.26 3.29 3.21 3.25 3.20 3.19 3.18 3.23 3.19	0.10 0.15 0.27 0.08 0.17 0.09 0.12 0.16 0.14 0.12 0.16 0.13 0.07 0.12 0.16 0.13 0.07 0.12 0.15 0.14 0.10 0.11 0.12 0.15	0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4.14 3.15 0.80 0.06 2.65 3.28 3.75 2.37 0.14 0.23 3.56 2.30 0.06 1.93 6.30 6.16 0.57 1.65 4.74 1.63 2.98 2.45 3.41 3.75
16-09-85 17-09-85 18-09-85 22-09-85 23-09-85	36.05 36.72 39.91 40.87 37.96	1.05 1.17 1.36 1.27 1.15	11.44 11.38 12.13 12.44 11.77	34.33 31.38 29.34 32.18 33.00	3.15 3.22 3.29 3.28 3.22	0.15 0.20 0.11 0.14 0.12	6 6 6 6 6	4.87 2.31 0.50 3.31 0.86
Nombre N Moy. X Ec.t. s Ec.r. s%	29 38.41 2.04 5.31	29 1.16 0.09 7.58	29 11.88 0.49 4.12	29 32.75 2.22 6.79	29 3.23 0.05 1.55		<u> </u>	

,

- 54 -

AAB 1075	PAI	RAMETRES	CINETIQU	JES DU I	KEROGEN	E		PARAMETRES CINETIQUES DES RESINES & ASPHALTENES						
Essai n°	E(Kcal) n Log A E/n E/Log A e d						dE	E(Kcal) n	Log A	E/n	E/Log A	е	dĭ"	dE
1 2 3 4 5 6	36.121.3235.441.3738.071.4737.451.4537.921.3638.131.46	10.93 10.67 11.24 11.10 11.38 11.29	27.43 25.86 25.89 25.82 27.88 26.11	3.33 3.32 3.38 3.37 3.33 3.33 3.37	0.14 0.13 0.14 0.14 0.15 0.10	5.7 5.7 5.7 5.7 5.7 5.7 5.7	1.60 1.34 0.41 0.02 2.45 0.62							
Moy. X Ec.t. s Ec.r. s%	37.20 1.40 1.12 0.06 3.01 4.47	11.10 0.26 2.38	26.50 0.91 3.44	3.35 0.03 0.90										

ANNEXE IV.2.3. REPRODUCTIBILITE DES RESULTATS CINETIQUES EN PYROLYSE COMPARATIVE

<u>AAB 2487</u>	PAF	RAMETRES	CINETIQ	JES DU I	KEROGEN	E		PARAMETRES CINETIQUES DES RESINES & ASPHALTENES							NES
Essai n°	E(Kcal) n	Log A	E/n E,	/Log A	e	dĭ"	dE	E(Kcal) n	Log A	E/n E	E/Log A	e	dī,	dE
1 2 3 4 5 6	52.93 1.86 51.18 1.82 52.77 1.84 51.62 1.88 52.23 1.90 50.98 1.75	14.46 14.04 14.43 14.05 14.23 14.11	28.45 28.12 28.69 27.45 27.49 29.13	3.66 3.64 3.65 3.67 3.67 3.61	0.15 0.13 0.14 0.13 0.18 0.15	5.7 5.7 0 5.7 0 5.7	1.40 0.10 5.81 0.35 2.85 0.40	48.26 36.80 38.73 40.02 40.05	1.34 1.08 1.06 1.02 1.37	14.30 11.44 11.97 12.57 12.02	36.01 34.07 36.53 39.23 29.23	3.37 3.21 3.23 3.18 3.33	0.43 0.48 0.48 0.17 0.21	0 5.7 5.7 0 5.7	3.95 2.84 0.87 7.73 20.5
Moy. X Ec.t. s Ec.r. s%	51.95 1.84 0.82 0.05 1.58 2.88	14.22 0.19 1.32	28.22 0.67 2.37	3.65 0.02 0.62				40.77 4.39 10.77	1.17 0.17 14.22	12.46 1.10 8.86	35.01 3.72 10.63	3.26 0.08 2.50			

LEGENDE DE L'ANNEXE IV.2.3. Paramètres cinétiques des courbes de pyrolyse des échantillons étudiés pour l'étude de reproductibilité des résultats de pyrolyse comparative (voir annexe III.3.3.). Paramètres cinétiques: énergie d'activation *E*, ordre de réaction *n*, facteur de fréquence *Log A*; Rapports *E/n* et *E/Log A*; Paramètres d'ajustement de la courbe théorique à la courbe expérimentale *e*, *dI*_m et *dE*. Ecart type *s* et écart type relatif *s*².

<u>AAF 3126</u>	PA	RAMETRES	CINETIQ	UES DU I	KEROGEN	IE		PARA	METRES	CINETI	QUES DES	RESINES	5 & ASI	PHALTE	NES
Essai n°	E(Kcal) n	Log A	E/n E,	/Log A	e	dĭŗ	dE	E(Kcal) n	Log A	E/n E,	/Log A	e	dĭ"	dE
1 2 3 4 5 6	61.531.4666.131.6163.621.4865.461.6164.811.5966.481.52	17.98 19.40 18.51 18.95 18.75 19.31	42.14 41.07 42.98 40.65 40.76 43.73	3.42 3.40 3.43 3.45 3.45 3.45 3.44	0.21 0.22 0.20 0.14 0.16 0.32	0 5.7 5.7 5.7 5.7 5.7 0	6.44 6.29 0.34 0.73 4.85 5.78	47.00 43.85 50.33 45.54 43.60	1.32 1.08 1.54 1.38 1.38	14.37 13.89 14.99 13.11 13.10	35.60 40.60 32.68 31.55 31.59	3.27 3.15 3.36 3.32 3.32	0.38 0.42 0.34 0.30 0.20	5.7 0 0 5.7 11.5	1.87 18.7 11.2 3.40 8.30
Moy. X Ec.t. s Ec.r. s%	64.67 1.54 1.85 0.07 2.85 4.34	18.82 0.53 2.81	41.89 1.27 3.04	3.43 0.02 0.57				46.06 2.75 5.98	1.34 0.16 12.44	13.89 0.82 5.88	34.40 3.84 11.15	3.28 0.08 2.48			

ANNEXE IV.2.3. (suite): REPRODUCTIBILITE DES RESULTATS CINETIQUES EN PYROLYSE COMPARATIVE

<u>AAB 3128</u>	PA	RAMETRES	CINETIQ	JES DU I	KEROGEN	E		PARAMETR	ES CINETI	QUES D	ES RESINES	& ASI	PHALTEI	NES
Essai n°	E(Kcal) n	Log A	E/n E,	/Log A	е	d۲۳	dE	E(Kcal) n	Log A	E/n	E/Log A	e	dĭ"	dE
1 2 3 4 5 6	54.26 1.22 54.67 1.26 53.62 1.24 54.05 1.21 54.95 1.22 54.32 1.23	16.16 16.26 16.00 16.14 16.37 16.20	44.47 43.38 43.24 44.67 45.04 44.16	3.35 3.36 3.35 3.34 3.35 3.35	0.14 0.15 0.17 0.16 0.15 0.17	5.7 5.7 5.7 0 0 0	1.56 4.50 3.30 4.40 2.40 7.80							
Moy. X Ec.t. s Ec.r. s%	54.31 1.23 0.47 0.02 0.86 1.45	16.19 0.12 0.77	44.16 0.72 1.63	3.35 0.01 0.19										

.

ANNEXE IV.3.1.

ANNEXE IV.3. DONNEES ROCK EVAL ET CINETIQUES DE LA PYROLYSE DE ROCHES à KEROGENE

ANNEXE IV.3.1. PYROLYSE DU KEROGENE DES ROCHES EXTRAITES

ROCHE à	R _o	PARAM	ETRES	ROCK	EVAL	INDICES				PARAME	TRES CI	VETIQUE	S de 1	la PYI	ROLYSE			
(code)	(%)	COT	IH	10	TMax	IT	IM	IPE	E(Kcal) n	Log A	dE	е	dī	E/n	E/Log A	%Rt _m 1	Max _c
AAD 0600 AAD 0100 AAD 0500 AAD 0800 AAD 0920 AAD 0910 AAD 0400 AAD 0700 AAD 0200 AAD 0300		13.55 4.47 25.19 5.98 16.00 16.80 16.72 21.11 9.95 13.64	892 803 966 908 900 883 792 878 820 771	41 79 35 40 43 41 43 46	432 432 450 444 440 449 441 449 442 443	1.0 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.3 1.5 1.5 1.5 1.5 1.9 2.1 2.1 2.1 2.3	.20 .19 .09 .22 .24 .27 .26 .28 .33 .29	35.98 35.65 39.52 39.93 48.92 37.75 29.75 41.13 38.89 35.05	0.87 0.73 0.63 0.58 0.90 0.91 0.68 0.63 0.60 0.68	11.54 11.59 12.77 13.06 15.08 12.10 9.87 13.25 12.64 11.39	4.7 7.8 15.4 1.6 2.5 0.9 16.3 10.3 15.3 17.0	0.19 0.41 0.50 0.58 0.59 0.13 0.15 0.65 0.50 0.20	0 0 0 0 6 0 11 0 0	41.33 64.81 62.73 68.84 61.15 41.48 43.75 65.28 64.81 51.54	3.11 3.07 3.09 3.05 3.24 3.12 3.01 3.10 3.07 3.07	70.37 75.23 80.68 72.25 63.37 63.37 72.43 83.83 80.95 80.27	64 67 88 88 127 73 61 94 85 64

A TYPE Ia (genre Green River Shale)

B: TYPE Ib (Crétacé d'Angola & Bas Zaire)

ROCHE à	R _o	PARAM	ETRES	ROCK	EVAL	I	NDICE	S		PARAME	TRES CI	NETIQUE	S de	la PYI	ROLYSE			
(code)	(%)	COT	IH	IO	TMax	IT	IM	IPE	E(Kcal) n	Log A	dE	e	dĭ"	E/n E	/Log A	%Rt _m]	[Max _g
AAA 2023 AAA 2019 AAE 2762 AAE 2766 AAE 2774 AAE 2770 AAG 2272 AAF 3132 AAU 3370 AAO 3463 AAO 3482 AAO 3561 AAO 3485	0.48	11.07 6.15 7.02 7.66 5.54 6.80 9.45 3.67 5.29 3.31 4.95 1.83	941 861 797 800 775 733 782 767 766 709 620 496 446	21 13 15 14 12 14 18 13 10 13 51 14 37	438 437 439 442 441 443 445 443 445 443 448 451 450 450 450 452	$1.0 \\ 1.0 \\ 1.1 \\ 1.0 \\ 1.1 \\ 1.1 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.3 \\ 1.3 \\ 1.0 $	1.3 1.5 1.9 2.1 2.3 2.6 2.6 2.6 2.6 2.6 2.6 2.7 2.8 3.1 3.3	.15 .26 .25 .33 .29 .32 .39 .30 .45 .53 .51 .66 .57	56.53 52.67 49.94 48.87 50.37 50.81 52.08 64.78 73.31 65.62 59.20 59.02 59.02 58.87	1.16 1.23 1.04 0.98 1.00 0.99 1.16 1.38 1.23 1.20 1.03 1.30 1.29	16.88 15.69 15.25 15.01 15.44 15.52 15.51 18.91 21.79 19.35 17.86 17.29 17.22	10.3 4.7 0.8 4.4 0.8 4.6 0.1 0.1 4.3 3.5 2.5 2.5 2.5 2.9	0.48 0.24 0.16 0.14 0.16 0.13 0.11 0.17 0.15 0.13 0.28 0.37 0.19	0 6 6 0 6 0 6 0 3 6	48.73 42.83 48.02 49.87 50.37 51.32 44.90 46.94 59.60 54.68 57.48 45.40 45.64	3.35 3.36 3.27 3.26 3.27 3.36 3.43 3.36 3.39 3.31 3.41 3.42	69.77 58.72 63.85 60.25 62.88 61.65 60.90 59.70 56.72 57.13 65.62 62.83 60.28	151 136 127 124 130 133 136 175 196 179 160 160 160

LEGENDE DES ANNEXES IV.3.1 & 2: Données Rock Eval et cinétiques de la pyrolyse de roches à kérogène de type I à IV: pyrolysat du kérogène des roches extraites (pic S2) et pyrolysat des résines & asphaltènes (pic S2' obtenu en pyrolyse comparative). R_o : réflectance de la vitrinite. Les paramètres Rock Eval sont: le Carbone Organique Total *COT* (%), l'Indice d'Hydrogène *IH* (mg HC/g Corg.), l'Indice d'Oxygène *IO* (mg CO₂/g Corg., mesuré sur roches extraites et traitées, avec piégeage du CO₂ jusque 450°C), la température *IMax* (°C) du sommet du pic S2 (kérogène) ou du pic S2' (résines & asphaltènes). Les Indices de Type *IT*, de Maturité *IM*, de Production Estimée *IPE* et de Migration *IMA* sont calculés selon la méthode exposée au chapitre III. Les résultats cinétiques sont: l'energie d'activation *E* (Kcal/mole), l'ordre de réaction *n* et le facteur de fréquence *log A* (s⁻¹). Les paramètres *dE*, *e* et *dT_m* mesurent la qualité de l'ajustement des courbes de réaction théoriques aux courbes de pyrolyse expérimentales (voir § IV.2.4.2). *Rt_m*: pourcentage cumulé de réaction au sommet du pic S2 ou S2'. *IMax₆*: température de genèse maximale d'hydrocarbures pour les courbes de réaction théoriques simulées avec les conditions thermiques du sondage AAB (T° surface: 25°C, Gradient Géothermique: 30°C/km et Taux d'Enfouissement: 73.33 m/Ma).

- 57 -

	ROCHE à	Ro	PARAM	ETRES	ROCK	EVAL	I	NDICE	S		PARAME	TRES CI	VETIQUE	S de '	la PYF	ROLYSE			
	(code)	(%)	COT	IH	10	TMax	II	IM	IPE	E(Kca]) n	Log A	dE	е	dï۳	E/n E	/Log A	%Rt _m T	Max _e
. ()	AAP 0786 AAP 0672 AAE 0840 AAP 1046 AAE 0760 KKF 1070 KKF 2050 FEC 4892 FEC 7505 AAF 3134 AAF 3126		6.62 8.15 4.58 9.21 5.96 12.45 11.26 9.29 13.73 2.88 1.36	578 586 623 631 634 664 641 556 619 479 528	33 27 33 41 35 57 54 40 19 19	393 401 407 411 415 415 422 420 426 432 433	2.2 2.1 2.0 1.9 1.8 1.8 2.1 1.8 2.1 1.8 2.1 2.0	0.4 0.5 0.7 0.9 1.1 1.1 1.3 1.3 1.7 2.3 2.6	.00 .00 .10 .16 .18 .19 .29 .11 .32 .21 .48	20.33 24.58 24.39 24.90 23.26 18.45 41.55 46.75 40.23 65.81 61.53	0.96 1.21 1.34 1.03 1.12 0.81 1.31 1.43 1.37 1.58 1.46	7.21 7.97 7.62 8.37 7.63 6.83 12.49 13.77 11.99 19.15 17.98	14.8 1.4 1.3 1.4 2.8 0.4 0.8 2.3 2.4 1.7 6.4	0.66 0.09 0.07 0.10 0.07 0.03 0.06 0.11 0.08 0.14 0.21	11 6 6 0 0 0 0 0 0 0 0 0	21.18 20.31 18.20 24.17 20.77 20.01 31.71 32.69 29.59 41.65 42.14	2.82 3.08 3.20 2.97 3.06 2.84 3.32 3.39 3.35 3.44 3.42	66.46 59.71 53.43 61.93 62.13 62.52 60.16 56.24 60.71 59.20 66.10	25 25 25 25 25 25 88 112 82 172 163
	AAO 3537 AAA 2870 AAA 2005 AAA 2865 AAO 3558		3.35 1.79 1.17 2.25 4.36	466 435 428 337 395	31 17 71 8 59	440 441 443 444 445	2.0 2.1 2.0 2.2 2.0	2.8 2.9 3.0 3.2 3.2	.62 .36 .69 .51 .72	55.25 65.08 58.20 54.14 52.67	1.34 1.65 1.55 1.50 1.37	16.36 18.31 16.76 15.39 15.40	4.0 0.8 2.6 1.8 3.7	0.23 0.91 0.16 0.19 0.16	0 0 6 6	41.23 39.44 37.55 36.09 38.45	3.38 3.55 3.47 3.52 3.42	62.56 59.91 57.84 54.30 59.26	145 178 154 145 136

C: TYPE IIa (Toarcien, Kimméridgien, et Crétacé d'Angola & Bas Zaïre)

D: TYPE IIb (Miocène d'Angola et Crétacé d'Angola & Bas Zaïre)

ROCHE à	R _o	PARAM	PARAMETRES ROCK EVAL				L INDICES PARAMETRES CINETIQUES de la PYROLYSE										
(code)	.(%)	COT	IH	10	TMax	IT	IM	IPE	E(Kcal) n	Log A	dE	е	d۲"	E/n E,	/Log A	\$Rt _m T	Max _s
AAE 1160 AAE 0640 AAC 0699 AAB 0505 AAB 0801 AAB 0801 AAB 1075 AAB 1075 AAB 1073 AAC 1393 AAC 1393 AAC 1393 AAB 1401 AAC 1032 AAB 1815 AAB 2143 AAB 2143 AAB 2487 AAB 2487	0.32 0.37 0.42 0.38 0.39 0.51	2.29 0.82 3.05 2.82 2.94 3.55 3.19 3.33 1.62 3.25 0.26 2.22 1.86 2.08 2.29 2.59	407 449 361 319 360 296 261 309 354 350 328 269 265 199	35 53 96 67 84 63 59 53 17 29 43 38 38 38 32 4	413 419 425 423 425 425 425 425 429 429 429 433 434 436 438 439	2.5 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	0.7 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.9 2.3 2.3 2.6 2.7 2.8	.01 .08 .15 .15 .15 .15 .20 .18 .21 .21 .23 .28 .35 .44 .52	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.47 7.04 7.00 8.77 10.46 9.56 11.10 10.245 12.45 13.40 7.52 14.76	1.3 2.1 0.6 1.8 0.2 3.2 0.4 3.7 5.1 3.6 2.8 3.7 3.5 7.8 6.0	0.09 0.13 0.18 0.26 0.18 0.21 0.14 0.42 0.13 0.20 0.36 0.31 0.33 0.29 0.38 0.29	11 3 0 0 0 11 6 11 0 0 0 0 0 0 0 0 0 0 0	20.21 18.43 21.39 28.68 30.07 26.01 25.82 29.34 35.26 33.21 29.74 32.91 36.55 34.65 37.85	3.00 3.14 3.17 3.10 3.27 3.29 3.37 3.22 3.28 3.36 3.37 3.43 3.50 3.46 3.48 2.55	56.96 59.53 60.53 60.39 60.71 60.56 61.44 63.78 65.89 63.31 62.06 62.60 55.40 48.41 50.49	25 25 25 28 58 40 70 49 88 100 76 112 142 124 136

ROCHE à	HE à R. PARAMETRES ROCK EVA				EVAL	I	NDICE	S	PAR	METRES C	INETIQ	IES de	la PYI	ROLYSE			<u></u>
(code)	(%)	COT	IH	IO	TMax	IT	IM	IPE	E(Kcal) n	Log A	dE	е	dĩ	E/n	E/Log A	%Rt _m T	Max _c
EZH 1875 EZH 1880 EZH 2390 EZH 2310 EZH 2290 EZH 2420 EZH 2420 EZH 2300 EZH 2470 EZH 2510 EZH 2510 EZH 2510 EZH 2550 EZH 2541 AAT 0290 AAT 0570 AAT 0786 AAT 0960 AAT 1190	0.83 1.11 1.29 1.37 1.73	1.36 0.96 9.97 11.73 8.18 8.38 5.94 4.63 2.77 3.85 4.02 3.78 0.97 1.10 1.25 1.10 0.92	38 44 113 114 81 78 59 73 77 83 62 57 95 44 33 40 24	74 88 28 42 37 32 36 43 35 33 45 33 45 60 44 33 40	414 416 426 428 427 428 430 430 430 430 431 432 432 432 432 432 432 432 432 432 432	4.0 4.0 3.0 2.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0	1.3 1.7 1.9 2.1 2.3 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.7 2.7 3.5 4.7 4.7 5.0	.19 .20 .22 .23 .25 .26 .26 .27 .27 .27 .27 .78	26.49 1.4 28.39 1.3 41.86 1.9 47.85 2.3 44.07 2.3 45.46 2.3 45.27 2.3 45.27 2.3 47.11 2.3 46.32 2.3 42.41 1.9 43.13 2.1 44.56 2.3 65.17 3.4 49.74 3.5 52.61 3.4 36.82 2.3	5 7.84 8 8.54 7 11.31 6 11.91 4 11.40 2 11.85 4 11.72 0 12.55 6 12.16 9 11.31 0 11.54 1 11.32 0 11.34 7 14.91 6 10.87 0 10.41 7 8.65 6 7.80	3. 0. 2. 4. 1. 0. 0. 1. 2. 1. 1. 3. 3. 1.	2 0.21 3 0.34 7 0.15 9 0.12 10 0.12 11 0.15 12 0.14 13 0.17 14 0.153 15 0.17 16 0.20 17 0.25 18 0.20 19 0.20 10 0.12 10 0.12 11 0.12 12 0.18 10 0.12 11 0.12 12 0.18 13 0.59 14 0.38 15 0.29 11 0.38 12 0.19	6 6 6 6 11 6 6 6 6 6 6 6 6 3 6 0 0 0 0 0 0	18.26 20.57 21.79 18.69 19.67 20.47 20.21 22.43 21.44 21.31 21.56 21.88 19.37 20.55 17.39 15.47 15.00 16.29	3.37 3.32 3.72 4.01 3.86 3.83 3.86 3.75 3.81 3.75 3.73 3.69 3.93 4.37 4.57 5.05 4.98 4.72	56.20 56.59 47.14 41.81 44.30 49.35 47.67 48.91 46.59 52.02 48.43 51.65 44.34 38.90 38.26 37.97 37.32 40.68	28 28 91 115 103 106 106 106 112 109 94 97 91 103 184 109 151 115 88

E: TYPE III & IV (roches à matière organique finement disséminée)

F: LIGNITES & CHARBONS

ROCHE à	ROCHE à R. PARAMETRES ROCK EVA KEROGENE						NDICE	S		PARAME	TRES CI	VETIQUE	S de	la PYI	ROLYSE			
(code)	(%)	COT	IH	10	TNax	II	IM	IPE	E(Kcal) n	Log A	dE	e	d۲"	E/n E	/Log A	%Rt " 1	[MaxG
AAS 5100 AAS 5200	0.31	54.68 55.80	130 124	74	395 398	3.0 3.0	0.5 0.5		18.22 20.27	1.25 1.31	5.75 6.24	2.1 0.2	0.48	11 0	14.57 15.47	3.16 3.24	50.91 54.27	28 28
AAS 3907 AAS 4370	0.75 0.77	51.54	255		434 441	2.6	2.3		59.91 45.11	2.25 1.57	15.59 12.69	9.1 6.2	0.13 0.33	0 0	26.62 28.73	3.84 3.55	57.81 61.42	163 109
AAS 3507 AAS 3470	0.92 0.92	79.14 79.14	165 213		433 439	2.7 2.5	2.6 2.8		64.12 63.10	2.87 2.67	15.55 15.87	7.6 5.0	0.06 0.03	0 0	22.34 23.63	4.12 3.97	52.21 44.14	175 169
AAS 3017 AAS 2528	1.15	76.57 88.40	194 153		454 461	3.0	3.9 4.3		50.21 45.56	2.09	12.63 11.07	6.6 4.1	0.11	0 0	24.02 21.49	3.97 4.11	57.24 57.89	136 121
AAS 2031 AAS 1425	1.70	88.37 89.12	122 68		472 498	3.5 3.5	4.6 5.0		50.59 65.80	2.11 2.41	12.28	5.0 0.3	0.16	0	23.97	4.12	55.81 50.09	145 208
AAS 1506 AAS 0772	2.00	89.12 91.77	65 15	14	508 600	3.5 4.0	5.2 6.0		69.35 80.66	3.41 3.37	14.28 17.39	0.6 8.2	U.11 0.35	0. 0	20.33 23.93	4.85 4.63	44.46 49.99	214 244
,		<u>.</u>				: <u> </u>			•						,		;	
INNERE ITTULI

ANNEXE IV.3.2. PYROLYSE DES RESINES & ASPHALTENES

A: TYPE Ia (genre Green River Shale)

RESINES+		INDIC	ES	PARAM.	ROCK	EVAL	PARAM	ETRES CII	NETIQUE	S de	la PYI	ROLYSE		
(code)	IT	IM	IMA	COT	IH	TMAX	E(Kcal) n	Log A	dE	e	dT۳	E/n E	/Log A	%Rt _m TMax _G
AAD 1000 AAD 0500 AAD 0800	1.3 1.0 1.0	1.5 1.5 1.5	-0.03 +0.02			425 410 430	50.84 0.84 42.64 0.77 55.84 0.89	16.67 14.24 17.54	2.0 11.3	2.10 3.8	0 0	60.52 55.37 62.74	3.05 2.99 3.18	121 88 145

B. TYPE Ib (Crétacé d'Angola & Bas Zaïre)

RESINES+		INDIC	ES	PARAM.	ROCK	EVAL	PAI	RAME	TRES CI	ETIQUE	S de 1	la PYI	ROLYSE			
(code)	II	IM	IMA	COT	ΙH	TMAX	E(Kcal) ı	n	Log A	dE	e	dTæ	E/n I	E/Log A	%Rt _m]	[Max _G
AAG 2329 AAE 2766 AAG 2272 AAG 2270 AAE 2770 AAE 2789 AAO 3561	1.3 1.0 1.0 1.3 1.1 1.3 1.3	1.9 2.1 2.6 2.6 2.6 2.6 3.1	-0.15 -0.19 -0.20 -0.14 -0.14 -0.10 -0.26	0.14 0.08 0.17 0.08 0.16 0.81	886	438 426 431 426 441 421 436	51.29 0 58.25 0 50.79 0 50.26 0 54.71 0 53.55 0 49.94 0	.83 .75 .69 .56 .54 .69 .94	16.28 18.62 16.67 16.79 17.81 17.65 15.42	0.2 18.3 25.7 6.2 11.6 9.18 3.30	0.64 1.24 0.18 0.64 0.61 0.45 0.46	6 11 0 0 0 0 0	48.73 77.67 73.60 89.75 101.3 77.60 53.13	3.35 3.13 3.04 2.99 3.07 3.03 3.18	68.56 64.87 80.31 77.42 78.87 73.84 69.43	130 151 124 121 142 130 127

C: TYPE IIa (Crétacé d'Angola & Bas Zaïre)

RESINES+		INDIC	ES	PARAM.	ROCK	EVAL		PARAME	TRES CI	NETIQUE	S de	la PYI	ROLYSE			
(code)	II	IM	IMA	COT	IH	TMAX	E(Kcal) n	Log A	dE	е	dT"	E/n ł	E/Log A	%Rt _m T	Max _s
AAA 2870 AAG 2246 AAO 3558 AAO 3560 AAO 3564 AAO 3515	2.1 2.0 2.0 1.9 2.1 2.0	2.9 2.9 3.2 3.2 3.2 3.2 3.3	-0.07 -0.50 -0.25 -0.24 -0.01 -0.23	0.11 0.06 0.94 0.92 1.20 0.32	954 886 1008 665 759	435 421 446 441 441 441	44.29 42.30 40.65 42.15 47.90 40.78	1.03 1.10 0.93 0.94 1.19 1.08	13.56 13.43 12.83 13.33 14.53 12.56	15.3 5.0 8.6 13.3 0.7 20.8	1.18 0.45 0.26 0.38 0.17 0.37	0 0 0 0 0	43.00 38.45 43.71 44.84 40.25 37.76	3.26 3.15 3.16 3.16 3.29 3.24	60.85 62.88 70.54 71.20 62.60 71.10	106 88 88 94 118 88

D: TYPE IIb (Niocène d'Angola)

RESINES+		INDIC	ES	PARAM.	ROCK	EVAL		PARAME	TRES CI	NETIQUE	S de '	la PYI	ROLYSE			
(code)	IT	IM	IMA	COT	IH	TMAX	E(Kcal) n	Log A	dE	e	d۲۳	E/n	E/Log A	%Rt _n T	Max _s
AAB 0801 AAB 0801 AAB 1073 AAB 1075 AAB 1401 AAB 2143 AAB 2143 AAB 2487	2.5 2.7 2.6 2.5 2.5 2.5 2.5 2.5	1.5 1.5 1.5 1.9 2.7 2.6 2.8	+0.05 +0.03 0 -0.03 -0.02 -0.09 0 -0.11	0.02 0.04 0.23 0.24 0.24	546 741 640 880	420 420 425 420 420 435 435 435 440	47.51 39.98 44.25 36.84 49.52 38.29 40.49 34.85	1.51 1.39 1.52 1.39 1.45 1.41 1.14 1.04	13.71 12.06 12.52 10.88 14.59 11.08 12.22 10.68	25.5 2.9 0.4 1.1 1.3 0.7 19.3 5.0	0.30 0.36 0.37 0.10 1.33 0.43 0.33 0.44	11 0 6 0 0 0 0 0 0	31.46 28.76 28.11 36.50 34.15 27.15 35.51 33.51	3.46 3.31 3.53 3.38 3.39 3.45 3.31 3.26	59.21 59.45 51.46 56.28 56.07 61.85 58.66 62.93	115 79 106 67 121 79 88 61

E: TYPE III (Matière organique finement dispersée et lignite)

RESINES+		INDICE	S	PARAM.	ROCK	EVAL	PARAM	ETRES CI	VETIQUE	S de	la PY	ROLYSE			
(code)	II	IM	IMA	COT	IH	TMAX	E(Kcal) n	Log A	dE	e	dĭ"	E/n E	E/Log A	%Rt _m T	Max _c
AAP 0850 AAS 5100 AAS 5200	3.0 3.0	0.3 0.5 0.5	0.13				41.40 2.14 45.50 2.49 39.67 2.23	12.60 13.10 11.51	7.0	0.43	11	19.35 18.27 17.79	3.29 3.47 3.45	39.27	64 82 61

INNEXE	IV.4.	PARAFFIN INDEX	& DONNEES C	INETIQUES	DE LA PYROLYSE	DE ROCHES	A KEROGENE

.

TYPE	CODE	INDI	CES				ORDRE de
KEROGENE	ECHANTILLON	IT	IM	IH	PI	E (Kcal)	n
<u>Ia</u>	AAD 1000 AAD 2000	1.3	1.5 2.1	803 820	19.65 22.75	35.65 38.89	0.75 0.60
Green River	AAD 3000	1.0	2.3	771	16.97	35.05	0.68
Shale	AAD 4000	1.0	2.1		19.70	29.75	U.68
<u>Ib</u>	AAF 3128	1.1	2.6	715	11.02	55.85	1.20
Bas Zaïre	AAE 2730	1.5	2.6	720 733	14.54	44.20 50.81	0.97
ĨĨa							
Black Shales	AAE 0680	2.2	0.7	543	11.30	22.52	1.36
Bas Zaïre							
<u>11b</u>	AAB 0801	2.5	1.5	360	5.37	34.28	1.14
N **-	AAB 10/5	2.7	1.5	261	3,90	37.45	1.45
Miocene,	AAB 1401	2.5	1./	354	0.50	43.18	1.30
Angola	AAB 1811	2.4	2.1	372	0.31	49.52	1.45
		2.5	2.0	209	3.80	53.73	1.4/
<u>Frétacé</u>	HHD 2407	2.0	2.9	199	2.74	51.40	1.3/
Annola et	AAA 2015	24	3 0	222	A 89	51 27	1 51
Bas Zaïre	AAE 1928	2.8	1.5	351	4.58	43.35	1.85
111	AAB 2771	(3.0)	30	140	1 30	<u> </u>	2 13
414	F7H 2290	3 0	23	81	1 00	44 07	2.13
	EZH 2200	2.9	2.1	114	1.54	47.85	2.56
Roches à	EZH 2330	3.0	2.6	78	1.06	45.27	2.24
	EZH 2360	3.0	2.6	73	1.00	46.32	2.16
Kérogène	EZH 2390	3.0	1.9	113	1.93	41.86	1.97
	EZH 2420	3.0	2.3	81	1.18	45.46	2.22
Disséminé	EZH 2450	3.0	2.7	62	0.74	41.80	1.91
	EZH 2470	3.0	2.6	59	0.86	47.11	2.10
	EZH 2510	3.0	2.6	77	1.00	42.41	1.99
	EZH 2541	3.0	2.7	57	0.68	44.56	2.30
	EZH 2589	2.7	2.6	83	1.26	43.13	2.00

LEGENDE DE L'ANNEXE IV.4 - Données géochimiques et paramètres cinétiques de la pyrolyse de roches à kérogène de différents types. Relation entre l'ordre apparent de réaction et la composition du kérogène, exprimée par le Paraffin Index *PI* (Larter & Senftle, 1985). *IT*: Indice de Type, *IM*: Indice de Maturité; *IH*: mg HC/g Corg.

B: TYPE Ib (Crétacé d'ANGOLA & BAS ZAIRE)

AAA 2	0 <u>19</u>	RESUL	TATS	ROCK	EVAL	RESULTA	TS CIN	ETIQUES	RAPP	ORTS
T°C/ h	Eqh	COT%	IH	TMax	IM	E(Kcal)	n	Log A	E/Log A	E/n
R.Extr	0	6.15	876	442	1.5	51.59	1.06	16.12	3.20	48.67
280/1	1			444		58.63	1.34	17.66	3.32	43.75
280/2	2			435		59.09	1.49	17.77	3.32	39.66
280/4	4			437		65.27	1.63	19.34	3.38	40.04
300/1	4	5.49	830	437	1.5	63.17	1.52	18.88	3.35	41.56
280/8	8			437		57.78	1.44	17.41	3.32	40.13
300/2	8	5.46	815	444	2.1	62.09	1.45	18.50	3.36	42.82
280/16	16			4 44		57.21	1.30			44.01
300/4	16	5.39	822	435	1.5	59.16	1.48	17.78	3.33	39.97
320/1	16	5.39	836	436	1.5	61.61	1.54	18.40	3.35	40.01
300/8	32	5.19	721	444	2.6	61.67	1.52	18.26	3.38	40.57
320/2	32	5.12	786	443	2.3	57.00	1.30	17.23	3.30	43.85
300/16	64	4.78	656	445	2.7	59.57	1.50	17.60	3.39	39.71
320/4	64	5.17	772	436	1.9	61.77	1.62	18.10	3.36	37.76
340/1	64	4.81	764	436	1.9	59.22	1.62	17.53	3.38	36.56
320/8	128	4.46	684	435	2.3	45.24	1.31	13.80	3.28	34.45
340/2	128	4.34	691	434	2.1					•• ••
320/16	256	3.84	445	444	3.0	67.58	2.15	18.83	3.59	31.43
340/ 4	256	3.65	5/5	441	2.7	63.52	1.88	18.33	3.49	33.79
340/8	512	2.94	402	447	3.3	59.44	2.01	16.53	3.60	29.5/
340/16	1024	2.63	150	465	4.3	45.98	2.23	11.66	3.94	20.62
320/64	1024	3.02	/0	4/6	4./	48.90	3.22	10.19	4.80	15.19
340/32	2048	2.29	01	485	5.0	66.04	4.64	12.40	5.33	14.23
390/64	4095	2.54	45						1	

C: TYPE IIa (Toarcien du BASSIN de PARIS)

<u>FEC 7</u>	5 <u>05</u>	RESUL	TATS	ROCK	EVAL	RESULTA	TS CIN	ETIQUES	RAPP	ORTS
T°C/h	Eq h	COT%	IH	TMax	IM	E(Kcal)	n	Log A	E/Log A	E/n
R.Extr	0	13.01	636	422	1.4	41.67	1.29	13.08	3.19	32.30
280/1	1	12.50	584	424	1.5	42.83	1.25	13.50	3.17	34.26
280/2	2	12.24	560	426	1.7	45.69	1.28	14.32	3.19	35.70
280/4	4	11.63	534	427	2.0	52.02	1.55	15.75	3.30	32.22
300/1	4	11.92	544	427	1.5	47.69	1.13	15.28	3.12	42.20
280/8	8	11.69	522	427	2.0	51.36	1.28	16.07	3.20	40.13
300/2	8	11.30	504	429	2.0	53.25	1.47	16.37	3.25	36.22
280/16	16	10.64	445	432	2.8					
300/4	16	9.95	487	431	2.4	55.60	1.46	17.12	3.25	38.08
320/1	16	10.86	465	430	1.9					
300/8	32	10.51	411	434	2.6					
320/2	32	10.21	366	436	2.0	50.93	1.29	15.79	3.23	39.48
280/64	64	10.55	259	435	3.0	62.85	1.66	18.66	3.37	37.86
300/16	64	9. 57	311	437	2.8	54.09	1.44	16.31	3.32	37.56
320/4	64	9.08	278	439	3.0	60.01	1.67	18.02	3.33	35.93
340/1	64	9.42	359	439	2.8					
320/8	128	8.44	211	445	3.0	54.74	1.68	16.16	3.39	32.58
340/2	128	8.41	253	444	3.2					
300/64	256	8.31	64	448	4.0	56.26	1.48	16.68	3.37	38.01
320/16	256	7.90	123	452	3.5	65.28	2.04	18.77	3.48	32.00
340/4	256	7.40	129	452	3.5					
340/8	512	7.33	93	458	4.1					

- 64 -

ANNEXE IV.5.1.

ANNEXE IV.5. PARAMETRES CINETIQUES DE LA PYROLYSE DE ROCHES A KEROGNE VIEILLIES ARTIFICIELLEMENT

ANNEXE IV.5.1. ECHANTILLONS VIEILLIS PAR PYROLYSE SECHE

A: TYPE Ia (Genre GREEN RIVER)

AAD O.	<u>300</u>	RESUL	TATS	ROCK	EVAL	RESULTA	TS CIN	ETIQUES	RAPP	ORTS
T°C∕h	Eqh	COT%	IH	TMax	IM	E(Kcal)	n	Log A	E/Log A	E/n
T°C/ h R.Extr 280/ 1 280/ 2 280/ 4 300/ 1 280/ 8 300/ 2 280/16 300/ 4 320/ 1 300/ 8 320/ 2 300/16 320/ 4 340/ 1 320/ 8 330/ 4 330/ 5 330/ 6 330/ 7 320/16 340/ 4 340/ 6	Eq h 0 1 2 4 4 8 8 16 16 16 16 32 32 64 64 64 64 128 128 128 160 192 224 256 256 384	COT [®] 14.48 12.22 12.95 12.85 12.39 11.50 11.89 12.58 11.26 11.75 10.56 10.62 8.96 9.49 9.19 8.75 8.87 8.41 8.15 8.14 5.89 6.79 6.48	IH 836 878 831 809 814 790 794 732 776 801 727 741 655 669 653 550 645 630 578 566 320 463 372	TMax 433 445 443 444 443 444 443 444 443 444 443 444 443 444 443 444 443 443 443 443 443 443 443 443 443 444 443 444 443 444 443 444 448 447 448 447 448 447 443 444	IM 1.0 1.9 2.3 1.9 2.1 2.6 2.3 2.6 2.3 2.6 2.6 2.6 2.6 2.6 2.6 2.7 2.7 2.9 3.1 3.3	E(Kcal) 39.34 36.44 42.89 43.61 44.61 43.96 49.94 47.71 49.04 49.62 48.53 54.15 51.42 49.82 48.06 48.31 48.75 50.50 45.81 45.31	n 0.79 0.61 0.81 0.64 0.77 0.78 0.78 0.70 0.86 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.6	Log A 12.97 12.50 14.08 14.56 14.65 14.43 16.22 15.71 15.83 16.29 16.01 17.70 16.69 16.52 15.90 15.91 15.37 15.97 14.89 14.71	E/Log A 3.03 2.91 3.05 3.00 3.04 3.05 3.08 3.04 3.05 3.08 3.04 3.10 3.05 3.03 3.06 3.08 3.07 3.02 3.04 3.07 3.02 3.04 3.17 3.16 3.08 3.08 3.09 3.05 3.09 3.05 3.00 3.05 3.03 3.05 3.00 3.00 3.05 3.03 3.05 3.00 3.05 3.00 3.0	E/n 49.80 74.51 52.95 68.14 57.94 56.34 64.03 68.16 57.02 74.06 72.43 72.20 70.44 70.17 75.09 75.48 65.00 53.72 57.99 56.63
340/ 8 340/16 340/32 340/64	512 1024 2048 4096		512	449 456 465 550		45.20 47.13 45.37	0.88 1.32 2.55	14.47 14.08 10.92	3.12 3.35 4.16	51.36 35.70 17.79

LEGENDE DE L'ANNEXE IV.5.1 - Paramètres Rock Eval et cinétiques d'échantillons vieillis par pyrolyse sèche. Le vieillissement est effectué sur des échantillons extraits au solvant organique, dans le four de pyrolyse du Rock Eval, sous un courant d'hélium et à température isotherme. L'intensité de la maturation artificielle dépend de la température *I* et du temps *h* (heures) de vieillissement. L'effet temps-température peut être exprimé en temps équivalent *Eq h*, pour un isotherme de 280°C: selon le principe de l'Indice *ITI* (Lopatin, 1971), l'effet du vieillissement est multiplié par un facteur r=2 pour chaque augmentation de 10°C, et il augmente proportionellement au temps passé à chaque isotherme. Les résultats Rock Eval sont le carbone organique total *COI* (%), l'Indice d'Hydrogène *IH* (mg HC/g Corg.), la température *TMax* au sommet du pic S2 (°C) et l'Indice de Maturité *IM*. Les résultats cinétiques sont l'énergie d'activation *E* (Kcal/mole), l'ordre de réaction *n*, le facteur de fréquence *Log A* (s⁻¹) et les rapports *E/Log A* & *E/n*.

D: TYPE IIb (Tertiaire d'ANGOLA)

AAB O	801	RESUL	TATS	ROCK	EVAL	RESULTA	TS CIN	ETIQUES	RAPP	ORTS
T°C∕ h	Eqh	COTS	IH	TMax	IM	E(Kcal)	n	Log A	E/Log A	E/n
R.Extr 280/1 280/2 280/4 300/1 280/8 300/2 280/16 300/4 320/1 300/8 320/2 280/64 300/16 320/4 340/1 320/8	0 1 2 4 4 8 8 16 16 16 16 32 32 64 64 64 64	2.94 3.10 3.09 3.07 2.99 2.98 2.89 2.90 2.88 2.76 2.91 2.77 2.77 2.77 2.60 2.67	327 247 238 212 229 177 207 191 172 178 178 179 62 95 111 107 86	429 433 436 436 436 438 438 438 438 438 439 440 442 444 443 443 443 445 448 447	1.5 2.3 2.5 2.6 2.6 2.8 2.7 2.8 2.9 2.9 3.2 3.2 3.2 3.2 3.3 3.4	35.97 38.57 40.67 47.48 38.96 48.92 47.33 48.20 47.15 47.30 57.01 48.91 66.18 55.27 55.91	1.17 1.33 1.40 1.56 1.34 1.60 1.41 1.60 1.43 1.84 2.08 1.96 2.72 2.21	11.37 11.79 12.30 14.07 11.84 14.43 14.23 14.17 14.16 13.35 15.89 13.53 17.34 14.94	3.16 3.27 3.31 3.37 3.29 3.39 3.33 3.40 3.33 3.40 3.33 3.54 3.59 3.62 3.82 3.70 4.37	30.74 29.00 29.05 30.44 29.07 30.58 33.57 30.13 32.97 25.71 27.41 24.95 24.33 25.01
340/ 2 320/16 340/ 4 340/16	128 256 256 1024	2.60 2.72 2.61 2.56	75 65 67 42	450 451 456 469	3.5 3.5 3.9 4.6	55.51	J.11	12170		10.10

E: Type III (Lignite)

<u>AAS 1</u>	000	RESULT	ATS	ROCK	EVAL	RESULTA	TS CIN	ETIQUES	RAPP	ORTS
T°C∕h	Eq h	COTS	IH	TMax	IM	E(Kcal)	n	Log A	E/Log A	E/n
R.Extr 280/1 280/2 280/4 300/1 280/8 300/2 280/16 300/4 320/1 300/8 320/2 280/64 300/16	0 1 2 4 4 8 6 16 16 16 16 16 32 32 64 64	40.13 (40.13)	114 103 86 83 87 66 53 52 53 42 40 25 30	396 409 416 421 423 423 432 431 432 431 432 436 436 436 439 441	1.0 1.0 1.5 2.0 2.6 2.5 2.5 2.6 2.8 2.8 3.0 3.0	22.99 44.53 48.35 51.35 48.24 50.62 48.51 49.84 48.07 49.32 49.01 48.88 51.64 45.77	1.47 2.48 2.20 2.66 2.25 1.74 1.94 1.82 2.08 1.87 1.85 2.29 2.05	6.97 11.70 13.27 13.30 13.08 13.66 13.82 13.88 13.56 13.42 13.62 13.57 13.44 12.12	3.29 3.80 3.64 3.69 3.71 3.51 3.59 3.54 3.68 3.60 3.60 3.60 3.84 3.78	15.65 17.96 21.98 19.30 21.35 22.50 27.88 25.69 26.41 23.71 26.21 26.42 22.55 22.33
320/ 4 320/ 8 300/64 320/16	64 128 256 256		28 23 9 16	441 446 549 503	3.0 3.2 5.6 5.0	49.48 55.58 50.07 45.72	2.80 3.86 4.14 5.15	11.78 11.47 8.18 5.67	4.20 4.85 6.12 8.12	17.67 14.40 12.09 8.98

ROCHE		PARAME	RES ROCH	EVAL			IND	ICES	PARAFFIN	PARAMETRES CINETIQUES						
EXTRAITE	\$2	\$3	COT	TMax	IO	10	IT	IM	PI	E(Kcal)	n	E/n				
Stade initial	54.78	0.31	6.61	443	829	5	1.0	2.1	12.0	62.81	1.11	56.59				
320°C / 72h	34.30	0.20	4.62	446	742	5	1.1	2.6	11.4	68.44	1.25	54.75				
330°C / 72h	16.22	0.20	2.95	449	550	7	1.3	3.0	7.3	69.61	1.55	44.91				
340°C / 72h	5.40	0.08	1.85	452	295	4	1.0	3.7	2.0	54.19	1.75	30.97				

ANNEXE IV.5.2. ECHANTILLON VIEILLI PAR HYDROPYROLYSE (kérogène de type I)

LEGENDE DE L'ANNEXE IV.5.2 - Paramètres Rock Eval et cinétiques d'échantillons de roche à kérogène de type I vieilli par hydropyrolyse, à température isotherme (h = heure). Les résultats Rock Eval sont: le potentiel pétrolier résiduel S2 (mg HC/g roche), les teneurs en oxygène S3 (mg CO₂/g roche), le Carbone Organique Total COI (%), la température IMax au sommet du pic S2 (°C), l'Indice d'Hydrogène IH (mg HC/g Corg.), l'Indice d'Oxygène IO (mg CO₂/g Corg.), et l'Indice de Maturité IM. Indices de Type IT et de maturité IM. Paraffin Index PI (méthode de Larter & Senftle). Les résultats cinétiques sont l'énergie d'activation E (Kcal/mole), l'ordre de réaction n et le rapport E/n.

.

1

V O L U M E II: FIGURES & TABLEAUX

FIGURES	&	TABLEAUX	DU	CHAPITRE	<u> 11</u>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	1
FIGURES	Ś	TABLEAUX	DU	CHAPITRE	<u>11</u>]	<u>ſ</u> .	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	ā
FIGURES	<u>&</u>	TABLEAUX	DU	CHAPITRE	<u> </u>	•	•	•	• •	• •	•	•	•	•	•	•			•	•	•	•	•	•	<u>43</u>
FIGURES	<u>&</u>	TABLEAUX	DU	CHAPITRE	V	•	•	•	• •	• •	•	•	•	•	•	•	• •		•	•	•	•	•	•	<u>77</u>

-+000+-

FIGURES & TABLEAUX

•

CHAPITRE II

FIGURES & TABLEAUX du CHAPITRE II

-+000+-

- 2 -

S2

PYROLYSE ROCK EVAL: PROGRAMMES DE TEMPERATURE

CYCLE d'ANALYSE	I	11	III
Temp. Initiale (°C) Durée Isotherme (mn) Gradient (°C/mn) Intervalle d'	240 0 20	250 0 26.5	300 3 26.5
intégration dt (s) dT (°C) Temp. Finale (°C)	30 10 600	11.4 5.035 600	11.4 5.035 600

Tabl. II. 1 - Programmes de température utilisés pour les analyses Rock Eval (gradient de température adapté à l'appareillage utilisé).

a: CORRELATION H/C - IH

b: CORRELATION O/C - IO

- Fig. II.3 Corrélations entre les rapports atomiques et les Indices Rock Eval de roches à kérogène de diverses provenances (d'après Espitalié & al., 1977)
 - a. Corrélation entre les rapports H/C et les Indices d'Hydrogène IH.
 - b. Corrélation entre les rapports 0/C et les Indice d'Oxygène 10.

DIAGRAMME IH - TMax

Fig. II.5 - Catactérisation du type et de l'état de maturité des roches à kérogène dans un diagramme *IH-IMax*, en relation avec les lignes d'isoréflectance de la vitrinite (Inédit).

Stades	Zones	D . (a)	CAL	TMax	TMax	Rock Ev	al (C)				
de Maturation Organique	de Genese d'HC	H ₀ (%)		Type III	Typel	Type II	TypellI		de l'Illit	е	
DIA - GENESE	Méthane Biogénique	-	1	- 425	Zone	Immatu 430	re 430		DIAGE	NESE	
CATA- GENESE	Huile Gaz Humide	- 0.5	1.5 2 3	- 430 - 445 - 465 - 535	440 Zo 445 Zone a	435 ne a Hu 455 Gaz Hu	435 ile 465 umide 535				
META- GENESE	Gaz Sec	 3.0 4.0	4	- 625 - 655	Zone	a Gaz S	655	ANCHI	- META-	MORPH	
ME TA - MORPHISME	Destruction des Gisements	5.0 10	6					M	TAMOR	PHISME	
Tissot &	. Welte, 1984		Epstein & al. 1977	Leplat & Paviet, 1984	Esp	italie, 19	86	Kich, 1974	Kubler & al . 1979	Teichmüller 8 al., 1979	Frey & al. 1980

STADES D'EVOLUTION DE LA MATIERE ORGANIQUE

Fig. II.6 - Principaux stades d'évolution de la matière organique sédimentaire et principaux indicateurs du degré d'altération thermique: Réflectance de la vitrinite R_o; Indices de Coloration des Conodontes CAI, Température IMax de la pyrolyse de roches à kérogène de type III. Niveaux de maturation organique des différents types de kérogène en fonction du paramètre TMax et en relation avec la réflectance de la vitrinite et Cristallinité de l'illite.

ANALYSEUR ROCK EVAL II

Fig. II.7 - Schéma de l'appareillage Rock Eval II avec le module pour le dosage du carbone organique total (d'après Espitalié & al., 1985a).

ROCK EVAL - CO_2 - CO

Fig. 11.8 - Schéma de l'appareillage Rock Eval I pour l'analyse en continu du CO₂ et du CO des gaz de pyrolyse (d'après Leplat & al., 1983). ROCK EVAL - SO2

Fig. II.9 - Schéma de l'appareillage Rock Eval I pour l'analyse en continu des composés soufrés des gaz de pyrolyse, transformés en SO_2 dans le détecteur *FID* (d'après Madec & Espitalié, 1985).

PYRO-CHROMATOGRAPHE EN PHASE GAZEUSE

Fig. II.10 - Schéma de principe de l'appareillage de pyro-chromatographie en phase gazeuse. 1- Régulateur de pression; 2- Diviseur; 3- Porte échantillon; 4- Four de pyrolyse à température programmée; 5- Micro-vanne;
6- Diviseurs; 7- Lignes de transfert chauffées; 8- Piège à azote liquide; 9- Entrée du gaz vecteur;
10- Détecteurs FID (d'après Solli & al., 1984).

APPAREILLAGE POUR LA CHROMATOGRAPHIE MPLC

Fig. II.11 - Schéma de l'appareillage pour la chromatographie liquide de moyenne pression MPLC.

SEPARATION DES PRINCIPAUX COMPOSES ORGANIQUES

Fig. II.12 - Protocole analytique pour la séparation et l'isolation des constituants organiques des roches à kérogène par MPLC.

FIGURES & TABLEAUX

CHAPITRE III

FIGURES & TABLEAUX du CHAPITRE III

Figures	Å	Tableaux	du	ş	<u>III.1</u>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	<u>10</u>
Figures	<u>&</u>	Tableaux	du	ş	111.2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	• <u>12</u>
<u>Figures</u>	<u>&</u>	Tableaux	du	ş	111.3	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	• <u>27</u>
Figures	&	Tableaux	du	ş	111.4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• <u>35</u>

-+000+-

Fig. III.1.1 - Analyse de l'échantillon AAB 2487 (Miocène d'Angola) par pyro-chromatographie en phase gazeuse (*Io*: Toluène; *Bz*: Benzène, *MPX*: Méta+Para Xylène, *cX*: Hydrocarbures à X atomes de carbone, *a*: alcane, *è*: alcène).

- a: Chromatogramme du pic S1 de la roche brute (hydrocarbures libres extraits thermiquement).
- b: Pyro-chromatogramme du pic S2 de la roche extraite (hydrocarbures du pyrolysat du kérogène).
- c: Chromatogramme du pic S1 du bitume (hydrocarbures libres, extraits thermiquement).
- d: Pyro-chromatogramme du pic S2 du bitume (hydrocarbures libres, non extractibles thermiquement et pyrolysat des résines & asphaltènes).
- e: Pyro-chromatogramme des pics S1 et S2 du bitume, analysés dans la même colonne (distribution complète des hydrocarbures libres ou adsorbés du bitume).

d: Courbes de pyrolyse comparative

- Fig. III.2.1 Principe de construction d'une courbe de pyrolyse comparative, illustré par l'échantillon AAB 2487 du Miocène d'Angola.
 - a: Courbe de pyrolyse de la roche brute.
 - b: Courbe de pyrolyse de la roche extraite au dichlorométhane.
 - c: Courbe de pyrolyse du bitume obtenue par différence entre les courbes (a) et (b).
 - d: Courbes de pyrolyse comparative avec la subdivision en fractions S1, S1', S2' et S2.
 - e: Courbe de pyrolyse des résines & asphaltènes (fraction S2' isolée).

.

COURBES DE PYROLYSE COMPARATIVE D'ECHANTILLONS OXYDES

Fig. III.2.2 - Courbes de pyrolyse comparative d'échantillons oxydés au KMnO4, de la roche à kérogène AAF 3126 (Crétacé du Bas Zaïre).

- 14 -

Fig. III.2.3 - Courbe de pyrolyse comparative des asphaltènes obtenue par différence entre les courbes comparatives du bitume extrait du dichlorométhane et du bitume extrait au n-hexane (AAF 3126). a: Courbes comparatives du bitume extrait au dichlorométhane et au n-hexane.

b: Courbe comparative des asphaltènes.

COMPOSITION DES FRACTIONS S1, S1', S2' ET S2

Fig. III.2.4 - Relations entre les principales classes de matière organique des roches à kérogène et la composition des fractions S1, S1', S2' et S2 des courbes de pyrolyse Rock Eval (méthode classique: Espitalié & al., 1985b et méthode comparative). Les températures d'ébullition des n-alcanes proviennent du "Handbook of chemistry and physics" (Weast, 1973).

FRACTIONS ORGANIQUES EN PYROLYSE ROCK EVAL (SYNTHESE)

ME	THODE CLASSIQUE	METHODE COMPARATIVE									
An	alyse Roche Brute uniquement		Analyse Roche Brute + Roche Extraite								
	VEDOCENE	\$2	<u>KEROGENE</u> M.O. insoluble dichlorométhane (d	dans le chloroforme)							
S2	M.O. Pyrolysable	\$2'	RESINES & ASPHALTENES M.O. soluble & pyrolysable	<u>BITUKE</u>							
		\$1'	$\frac{HYDROCARBURES LOURDS}{C_{20} - C_{35} (C_{40})}$ Non thermovaporisables	M.O. soluble dans le							
\$1	<u>BITUME</u> M.O. Thermovaporisable	\$1	<u>HYDROCARBURES LEGERS</u> (C ₁) C ₁₁ - C ₂₅ Thermovaporisables	dichlorométhane (chloroforme)							

Tabl. III.2.1 - Relations entre les définitions associées à la pyrolyse Rock Eval en méthode classique et en méthode comparative (M.O. = Matière Organique). Pour la méthode classique: thermovaporisation à 300°C (3mn) et pyrolyse de 300 à 600°C (25°C/mn). Pour la méthode comparative: thermovaporisation de 250 à 300-360°C (25°C/mn) et pyrolyse de 300-360 à 600°C (25°C/mn).

- Fig. III.2.5 Corrélations entre les teneurs en bitume analysés par pyrolyse comparative et les teneurs en bitume extrait au dichlorométhane, pour des échantillons de diverses provenances (données: annexes III.2). La droite de corrélation linéaire est tracée pour les données des roches à kérogène uniquement.
 - a: Corrélation entre les fractions S1 (hydrocarbures libres légers) et les teneurs en extrait.
 - b: Corrélation entre l'ensemble des fractions du bitume (S1+S1'+S2') et les teneurs en extrait (corrélation pour les points dont les teneurs en extrait sont inférieures à 20 mg/g roche (GRS = données des échantillons de Green River Shale).

CORRELATIONS AVEC LES FRACTIONS MPLC DU BITUME

- Fig. III.2.6 Corrélations entre les teneurs en fractions du bitume déterminées par pyrolyse comparative et les teneurs en hydrocarbures et résines & asphaltènes obtenues par chromatographie MPLC, pour des échantilions de diverses provenances (données: annexe III.1). a: Corrélation S1 - (saturés + aromatiques). b: Corrélation S1+S1' - (saturés + aromatiques).
 - c: Corrélation S2' (résines + asphaltènes).
 - 19 -

REPRODUCTIBILITE DES PARAMETRES ROCK EVAL

VALEUR	At	IALYSE ROCH	(EVAL CLASS)	IQUE	ANALYSE ROCK EVAL EN PYROLYSE COMPARATIVE								
ECARTS TYPES (s%)	Cycle I AAB 0505	Cycle II REF 1913	Dembicki (1984)	Espitalié & al. (1986)	Cycle II AAB 1075	Cycle II AAB 2487	Cycle II AAF 3126	Cycle II AAF 3128					
<u>COT</u> Roche brute Roche extraite Résines & asphaltènes		2.32	2.5-4.1	5	0.73 1.11 16.94	0.99 2.27 28.04	1.25 1.73 6.40	2.29 2.44 69.44					
<u>Température TMax</u> Roche brute Roche extraite Résines & asphaltènes	0.02	0.52	0.47-3.01	1	0.4 3.5	0.1 0.6	0.2 2.3	0.2 6.3					
<u>Indice d'Hydrogène IH</u> Roche brute Roche extraite Résines & asphaltènes		4.01			1.7 29.6	4.7 31.0	3.5 12.8	2.8 18.2					
<u>Indice d'Oxygène IO</u> Roche brute		27.01			8.1	4.5	36.0						
Teneurs en HC et CO2S1 (HC légers)S1'(HC lourds)S2'(HC des rés+asph)S2 (HC du kérogène)S3 (CO2 du kérogène)	21.65 5.78	15.45 4.32 27.22	14-99 12-141	8 10	7.66 19.12 37.01 2.32	2.86 8.79 7.29 3.24	2.45 5.16 7.24 2.58	2.79 43.91 14.05 1.95					
<u>Teneurs en Bitume</u> Pyrolyse comparative Extrait dichlorométh.					25.66 2.85	3.16 2.37	1.88 3.78	5.82 2.79					
Indices de production IKB (kéro> bitume) IKA (kéro> rés+as) IAH (rés+asph> HC) IQH (qualité d'huile) IP (Indice Pétrolier) Bitmen ratio	33.32	13.45			22.66 34.64 19.65 6.92 9.80 25.10	2.90 7.89 1.97 2.84 1.72 2.50	1.26 7.28 1.58 1.27 1.71 1.70	3.91 16.94 6.82 6.49 0 6.20					
Moyennes X (Nmbre=) COI roche extraite (%) COI rés. & asph. (%) S1 (mg HC/g roche) S1' (mg HC/g roche) S2' (mg HC/g roche) S2 (mg HC/g roche) Bitume (mg/g roche) IKB (S1+S1'+S2')/Total	(11) 2.80 0.58 8.60 0.17	(17-52) 2.09 6.92 0.58			(6) 2.94 0.02 0.43 0.19 1.12 8.75 2.91 0.23	(6) 2.18 0.19 2.16 0.82 1.33 4.76 5.68 0.43	(6) 1.34 0.47 10.18 2.15 3.09 7.77 16.37 0.66	(6) 11.27 0.47 6.51 1.17 5.12 81.15 12.81 0.14					

.

 Tabl. 111.2.2 - Reproductibilité des paramètres Rock Eval de la méthode classique, et de la méthode comparative. Les données détaillées pour chaque échantillon sont reprises aux annexes III.3 (Nmbre = nombre de résultats).

<u>AAB</u> Drof	m	g HC/g	roche		% HC/	Total H	C roche	IND	INDICES de PRODUCTION					
(¤)	\$2	\$2'	\$1'	\$1	\$2	S2'	\$1'	S1	IKB	IKA	IAH	IQH	IP	Bit.R.
505 801 802 1073 1075 1401 1402 1692 1811 1815 2143 2144	9.00 10.58 10.52 10.29 8.34 13.85 11.51 8.75 8.26 7.28 5.00 5.33	0.19 2.34 2.08 2.17 1.48 1.40 1.76 0.81 1.59 0.94 1.52 1.71	0 0.14 0.45 0 0.10 0.22 0.59 0.26 0.68 0.73 0.46 0.52	0.04 0.17 0.20 0.06 0.19 0.53 0.25 0.15 1.13 0.49 0.76 0.66	97.51 79.97 79.40 82.19 82.49 96.56 81.52 87.76 70.84 77.12 64.60 64.84	2.06 17.69 15.70 17.33 14.64 8.75 12.46 8.12 13.64 9.96 19.64 20.80	0 1.06 3.40 0 0.99 1.38 4.18 2.61 5.83 7.73 5.94 6.33	0.43 1.28 1.51 0.48 1.88 3.31 1.84 1.50 9.69 5.19 9.82 8.03	0.03 0.20 0.21 0.18 0.13 0.13 0.12 0.29 0.23 0.35 0.35	0.02 0.18 0.17 0.17 0.15 0.09 0.13 0.08 0.16 0.11 0.23 0.24	0.02 0.12 0.24 0.03 0.16 0.35 0.33 0.33 0.53 0.53 0.56 0.45 0.41	1.00 0.55 0.31 1.00 0.66 0.71 0.31 0.36 0.62 0.40 0.62 0.56	0 0.01 0.02 0.02 0.03 0.02 0.02 0.02 0.10 0.05 0.10 0.08	77.19 92.01 72.22 62.99 56.55 70.26 77.68 48.03 132.81 86.75 124.55 119.92
2483 2487 2771	5.32 4.57 0.73	2.07 2.11 0.04	0.84 0.97 0.03	1.62 1.77 0.35	54.01 48.51 63.48	21.02 22.40 3.48	8.53 10.00 2.61	16.45 18.79 30.43	0.46 0.51 0.37	0.28 0.32 0.05	0.54 0.56 0.90	0.66 0.65 0.92	0.16 0.19 0.30	158.39 175.72 85.71

AAB		COT (%)			TMax	(°C)	IH (mg H	IC/g Corg.)	IO (mg CO ₂ /g Corg.)
(m)	Rbr	Rex	Re+As	Rbr	R.x	Re+As	R _{ex}	Re+As	Rex
505	2.63	2.82		423	423		319		68
801	2.88	2.94		425	425	430	360		91
802	3.78	3.55	0.175	425	425	420	296	(1186)	63
1073	3.54	3.33	0.205	425	425	435	309	(1059)	53
1075	3.13	3.19		425	425	420	261		51
1401	3.06	2.85	0.147	426	426	440	486	952	27
1402	3.36	3.25	0.039	426	429		354		50
1692	2.54	2.54		430	430	425	344		35
1811	2.56	2.22	0.188	432	432	435	372	846	38
1815	2.49	2.22	0.168	434	434	430	328	561	43
2143	2.20	1.86	0.238	436	436	435	269	640	25
2144	2.41	2.08	0.231	438	438	435	256	741	34
2483	2.86	2.53	0.123	442	442		210		34
2487	2.76	2.29	0.240	439	439	440	199	880	19
2771	0.49	0.49		455	455	465	149		

Tabl. III.2.3 - Résultats des analyses Rock Eval des échantillons du sondage AAB dans le Miocène d'Angola, en pyrolyse comparative.

FRACTIONS \$2: kérogène, \$2': résines & asphaltènes, \$1': hydrocarbures lourds, \$1: hydrocarbures légers. INDICES DE PRODUCTION IKB: Kérogène --> Bitume (\$1+\$1'+\$2')/(\$1+\$1'+\$2'+\$2), IKA: kérogène --> résines & asphaltènes \$2'/(\$2'+\$2), IAH: résines & asphaltènes --> hydrocarbures (\$1+\$1')/(\$1+\$1'+\$2'), IQH: qualité de l'huile \$1/(\$1+\$1'), IP: \$1/(\$1+\$1'+\$2'+\$2), Bit.R.: bitumen ratio (\$1+\$1'+\$2')/COT. R_{ex} = roche brute, R_{ex} = roche extraite (kérogène uniquement), Re+As = résines + asphaltènes.

Fig. III.2.7 - Courbes de pyrolyse comparative d'échantillons du sondage AAB (Miocène d'Angola), prélevés entre 801 et 2771 m de profondeur. Limite Zone Immature - Zone à Huile: 1900-2000 m; 2771 m = zone de formation principale d'huile.

SONDAGE AAB: EVOLUTION DES TENEURS

Fig. III.2.8 - Evolution avec la profondeur des teneurs relatives en hydrocarbures, résines & asphaltènes et kérogène, dans les échantillons du sondage AAB (Miocène d'Angola).

SONDAGE AAB: EVOLUTION DES INDICES DE PRODUCTION

Fig. III.2.9 - Evolution avec la profondeur des indices de production déterminés en pyrolyse comparative, dans les échantillons du sondage AAB (Miocène d'Angola).

CARACTERISATION DU BITUME DE ROCHES à KEROGENE

Fig. III.2.12 - Courbes de pyrolyse comparative de différentes roches à kérogène et roches réservoirs.
a: AAF 3128; roche mère en cours de production et dont le bitume à été expulsé
b: AAF 3126; roche mère en cours de production et dont le bitume est resté en place.
c: AAC 0649; roche à kérogène immature contenant une forte proportion d'huile migrée.
d: AKA 1162; roche réservoir ne contenant que de l'huile migrée.

SONDAGE AAB: DUNNEES GEUCHIMIQUES POUR LA MAIIERE MINERA	SONDAGE AAB: DO	NNEES GEOCHIMIQUES	POUR LA	MATIERE	MINERAL
--	-----------------	--------------------	---------	---------	---------

, Second the second	Prof.	R.	Carb.	Arg.	COT	S (% pondéral)					FeS2			
	(m)	ş	ş	8	%	Total	Org.	Sulf.	Total	Carb.	Oxy.	Sulf.	Sil.	z
	801 1075 1401 1811 2143 2487	0.32 0.37 0.38 0.39 0.51	17 9 22 10 18 15	38 35 24 26 28 24	3.50 3.53 3.16 2.53 2.20 2.88	1.76 1.48 1.41 1.50 1.40 1.50	1.05 0.77 0.75 0.84 0.74 0.69	0.71 0.71 0.66 0.66 0.66 0.81	2.43 3.08 2.40 2.60 3.50 2.84	0.11 0.96 0.48 0.96 1.76 1.22	0.42 0.47 0.45 0.16 0.15 0.09	0.64 0.63 0.59 0.59 0.57 0.72	1.26 1.02 0.88 0.89 1.02 0.81	1.35 1.34 1.25 1.25 1.23 1.53

Tabl. III.3.1 - Données géochimiques sur la matière organique et la matrice minérale des échantillons du Miocène d'Angola (sondage AAB). Réflectance de la vitrinite R_{σ} et teneur en carbonates *Carb*, argiles *Arg*, carbone organique total *COT*, soufre total *S* et fer total *Fe*. La répartition du soufre et du fer dans les différentes classes de composés (matière organique, sulfures, carbonates, oxydes, silicate) a été obtenue par extraction chimique sélective séquentielle.

SONDAGE AAB: DONNEES GEOCHIMIQUES SUR LA MATIERE ORGANIQUE

Duck	COT (%) IH TMa			TMax	CO ₂ mg/	g roche	CO mg/g	roche	\$0₂ mg,	/g roche	IO mg CO ₂ /g C org			
(m)	Rur	Rur	Rior	Rur	R⊾r ->390°C	R _{ir} ->450°C	Rur ->390°C	Rir ->450°C	R⊳r ->450°C	R _{br} Pyrite	Rьг ->390°С	Rtr ->450°C		
505 801 1075 1401 1811 2143 2487	2.82 2.88 3.13 3.06 2.56 2.20 2.76	2.93 3.67 3.64 3.99 3.13 2.69 3.22	319 360 261 486 372 269 199	423 425 425 429 432 436 439	9.01 5.95 3.50 3.42 2.08 3.31 2.57	1.98 3.34 1.86 1.08 1.14 0.67 0.60	0.54 0.14 0.17 0.04	0.68 0.11 0.16 0.10	0.140 0.170 0.160 0.058 0.026	0.008 0.060 0.024 0.034	319 207 112 112 81 150 93	68 91 51 27 38 25 19		

Tabl. III.3.2 - Données géochimiques des analyses Rock Eval pour les échantillons du Miocène d'Angola (sondage AAB). *R_{br}*: roche brute (non décarbonatée); *R_{tr}*: roche traitée (décarbonatée). *C01*: Carbone Organique Total (%); *IH*: Indice d'Hydrogène (mg HC/g Corg.); *IMax*: température au sommet du pic S2 (°C); *I0*: Indice d'Oxygène (mg CO₂/g Corg.). Les paramètres COT, IH, TMAX et IO_{Rbr} proviennent d'analyses selon la méthode Rock Eval classique.

-INDICE d OXYGENE (mg CO₂ /g Cory) -

Fig. III.3.3 - Courbes de pyrolyse du CO_2 , CO et SO_2 de roches à kérogène du Miocène d'Angola (sondage AAS). _____: roche brute (R_{br}) ____: roche traitée (R_{br}) : analyse du blanc.

PYROLYSE DE CARBONATES & ROCHES CARBONATEES

	mg/groche											
Echantillon minéral	C ->390°C	0 ₂ ->450°C	C ->390°C	0 ->450°C	SO₂ Pyrite 460-560°C							
Craie Cap Blanc Nez (Crétacé) Calcaire Charleville (Jurassi.) Marbre Vosges (métamorphique) Calcaire Belgique (Givétien) Calcite pure (rhomboédrique) Pyrite de Toscane Calcite - Pyrite (95/5) Siderite pure (Massif Central)	1.18 0.46 0.16 0.14 0.01 0.00 0.08 11.47	0.02 0.00 0.58 151.6	0.270 0.005 0.013 0.099 0.103 0.000 0.080	0.66 0.00 2.40	0.014							

Tabl. III.3.3 - Quantités de CO₂, CO et SO₂ détecté lors de l'analyse de différents échantillons minéraux, de 240 à 390°C, de 240 à 450°C ou de 460 à 560°C.

Fig. III.3.4 - Courbes de pyrolyse du CO_2 de carbonates et de roches carbonatées, en comparaison avec la courbe du CO_2 de la roche brute AAB 801.

COURBES DE PYROLYSE DE L'ECHANTILLON AAB 1075

Fig. III.3.6 - Courbes de pyrolyse de la roche extraite (non décarbonatée) AAB 1075 (Miocène d'Angola). a: Comparaison avec les courbes CO₂ de la sidérite et du mélange calcite - pyrite (98-2). b: Courbes du CO₂, SO₂ et HC (Hydrocarbures).

a: Roches Extraites

- Fig. III.3.7 Etude d'une série de roches à kérogène dans un diagramme IH-IO (données: annexe III.2). a: Roches extraites (non décarbonatées), analysées selon la méthode classique, avec piégeage du CO₂ jusque 390°C.
 - b: Roches extraites & traitées (décarbonatées), analysées selon la nouvelle méthode, avec piégeage du CO₂ jusque 450°C.

Fig. III.3.8 - Différences △ IO entre les valeurs de l'Indice d'Oxygène des roches extraites (non décarbonatées) et des roches traitées (décarbonatées), en fonction de la teneur en carbonates (données: annexe III.2).

a: Roches à kérogène de type I et IIa mature (pauvres en composés 0 et S).

b: Roches à kérogène de type IIa immature, IIb et III (riches en composés 0 et S).

TYPE de KEROGENE	ORIGINE	REFERENCES ETUDIEES	IT (Indice de Type)
I	Lacustre (algaire)	-Green River Shale -Crétacé du Bas Zaïre et d'Angola	1.0
IIa	Warine (planctonique)	-Kimméridgien -Toarcien -Crétacé d'Angola	2.0
IIÞ	Mixte (marine - terrestre)	-Niocène d'Angola (sondage AAB)	2.5
III	Terrestre (dé- bris de végétaux supérieurs)	-W.O. Disséminée -Lignites -Charbons	3.0
IV	Terrestre (dé- bris de végétaux supérieurs)	-N.O. très évoluée	4.0

DEFINITION DE L'INDICE DE TYPE IT

Tabl. III.4.1 - Relations entre l'Indice de Type *IT* et les principaux types de matière organique définis par Tissot & al. (1974); Tissot & Welte (1984) et Mukhopadhyay & al., (1985).

REFLECTANCE VITRINITE R _o (%)	Indice TMax Pic S2 (°C)	ETAPES de MATURATION	IN	PRODUC- TION d'HC	STADES d' Evolution
0.22	100 105	Zone	1.0	GĂZ	DIA-
0.32	<u> </u>	Immature	2.0	GENIQUE	GENESE PRECOCE
0.7 (type I) 0.5 (type II)	430 - 435		2.5 -		
1.0	450 - 455	Zone	3.0 3.5	HUILE	A.T.
			4.0		CATA-
1.3	460 - 465	Mature	- 4.5 - 5.0	GAZ	GENESE
2.0	530	Zone	5.5 -	GAZ	NETA-
4.0	700	post- ∎ature	6.0	SEC	GENESE

DEFINITION DE L'INDICE DE MATURITE IM

Tabl. III.4.2 - Relations entre l'Indice de Maturité *IM*, les principaux indices de maturation et les principales étapes de maturation de la matière organique définies par Tissot et Welte (1984).

PRINCIPE DU CALCUL DES INDICES D'HYDROGENE IH, et IH:

Fig. III.4.2 - Principe de l'estimation de l'Indice d'Hydrogène initial IH_o et de la valeur de IH\$, à partir des valeurs de IH_p et de IMax_p d'une roche à kérogène enfouie à la profondeur p (R_o = Réflectance de la Vitrinite).

Fig. III.4.3 - Evolution relative des teneurs en Carbone Organique résiduel COT, du potentiel pétrolier résiduel S2 et de l'Indice d'Hydrogène résiduel IH, avec la maturation thermique artificielle de roches à kérogène de type I (Crétacé d'Angola), de type IIa (Toarcien du bassin de Paris) et de type IIb (Miocène d'Angola). Les échantillons initialement immatures ont été vieillis au Rock Eval, par pyrolyse sèche (données: annexe III.5).

a: Relations entre les valeurs relatives de COT résiduel et de S2 résiduel.

b: Relations entre les valeurs relatives de IH résiduel et de S2 résiduel.

PRINCIPE D'UTILISATION DES INDICES IKB, IPE ET IMA

Fig. III.4.4 - Schéma de principe de l'utilisation des indices KB (proportion de bitume par rapport à la matière organique totale), IPE (production estimée) et IMA (proportion de bitume migré), pour qualifier les phénomènes de drainage et d'accumulation. IMA = (IKB - IPE)

CORRESPONDANCE ENTRE LES INDICES DE PRODUCTION ESTIMEE *IPE* ET DE MATURITE *IM*

INDICE DE	INDIC	e de produc	CTION ESTIME	E IPE
	Туре I	Type IIa	Type IIb	Type III
0.5	0	0	0	0
0.7	0.11	0.10		0.02
0.9	0.13	0.16	0.03	0.05
1.1	0.18	0.21	0.27	0.08
0.3	0.22	0.29	0.10	0.12
<u>1.5</u>	0.26	<u>0.33</u>	<u>0.15</u>	<u>0.15</u>
1.7	0.30	0.38	0.19	0.18
1.9	0.32	0.42		0.20
2.1	0.35	0.44	0.25	0.22
2.3	0.39	0.46	0.30	0.24
<u>2.5</u>	<u>0.45</u>	<u>0.50</u>	<u>0.35</u>	
2.6	0.51	0.53	0.40	0.27
2.7	0.56	0.58	0.42	0.28
2.8	0.60	0.60	0.47	0.30
2.9	0.65	0.67	0.51	0.31
3.0	0.67	0.69	0.55	0.32
3.1	0.71	0.72	0.59	0.34
3.2	0.73	0.76	0.64	0.36
3.3	0.76	0.81	0.71	0.38
3.4	0.79	0.82	0.75	0.40
<u>3.5</u>	<u>0.81</u>	0.85		<u>0.72</u>
3.7	0.84	0.92	0.79	0.43
3.9	0.89	0.97	0.82	0.45
4.1	0.93	0.98	0.83	0.46
4.3	0.96	0.99	0.85	0.47
4.5	0.97	0.999	0.86	0.48
4.6	0.99		0.88	0.50
4./5				0.54

Tabl. III.4.3 - Correspondance entre les valeurs de l'Indice de Production Estimee *IPE* et l'Indice de Maturité *IM*, pour les principaux types de kérogène: type I (IT=1.0), type IIa (IT=2.0), type IIb (IT=2.5) et type III (IT=3.0) (*IT*: Indice de Type).

Drof	DONNE	ES ET IND	ICES	ESTI	MATIO	N THEOR	IQUE de	1a PR	ODUCTI	ON et MI	IGRATI	ON du	PETROLE		
	pyroly	se compar	ative	Nou	welle	méthod	e (1)	M	éthode	(2)	Méthode (3)				
AAB	IH TMax	IT I	M IKB	IH.	IH%	IPE	IMA	IH.	Taux	IMA	IH.	Taux	IMA		
0505 0802 1073 1075 1401 1402 1692 1811 1815 2143 2148 2483 2487	319 423 296 425 309 425 263 425 486 426 354 429 344 430 372 432 328 434 269 436 259 438 210 442 200 439	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 0.03 5 0.21 5 0.18 5 0.13 9 0.13 9 0.12 1 0.29 3 0.23 6 0.35 7 0.35 1 0.46 9 0.51	371 353 368 320 546 437 431 454 440 395 427 440 380	86 84 82 89 81 80 82 75 68 60 48 53	0.15 0.18 0.18 0.20 0.14 0.21 0.22 0.20 0.28 0.35 0.44 0.57 0.52	-0.12 +0.03 0.00 -0.03 -0.01 -0.02 0.12 +0.09 -0.05 0.00 -0.09 -0.11 -0.01	371 353 368 320 546 437 431 454 440 395 427 440 380	0.19 0.21 0.22 0.23 0.18 0.27 0.28 0.26 0.35 0.41 0.50 0.63 0.57	-0.16 0.00 -0.04 -0.05 -0.09 -0.16 +0.03 -0.12 -0.06 -0.15 -0.20 -0.06	377 377 377 377 377 377 377 377 377 377	0.21 0.29 0.24 0.39 0.00 0.09 0.12 0.02 0.12 0.02 0.18 0.37 0.40 0.54 0.56	-0.18 -0.08 -0.06 -0.21 +0.13 +0.09 0.00 +0.27 +0.05 -0.02 -0.05 -0.08 -0.05		
2771	149 455	1.9 3.	9 0.37	677	22	0.97	-0,60	677	0.98	-0.61	377	0.69	-0.32		
Moyeni Somme	Moyenne des valeurs, jusque 2487 m Somme des carrés des valeurs, jusque 248						-0.03 0.060			-0.08 0.151			-0.003 0.218		

SONDAGE AAB: ESTIMATION DE LA PRODUCTION - MIGRATION

Tabl. III.4.4. - Estimation quantitative de la production et de la migration du pétrole dans les échantillons de roche à kérogène du sondage AAB (Miocène d'Angola). Comparaison entre les résultats obtenus par trois méthodes différentes.

1: calcul de l'Indice de Production Estimé IPE à partir des valeurs de IH, déterminées sur un diagramme IH-TMax.

2: calcul du *Taux de Transformation* (Pelet, 1985) à partir des valeurs de *IH*, déterminées par la méthode (1).

3: calcul du *Taux de Transformation* (Pelet, 1985) à partir d'une valeur moyenne de *IH*_o = 377 mg HC/g Corg.

L'indice de migration *IMA* est déterminé par différence entre l'Indice de production observé *IKB* et l'indice *IPE* ou le *Taux de Transformation*.

Fig. III.4.5 - Evolution avec la profondeur de l'indice IKB (production observée), de la production estimée et de l'Indice de Migration IMA dans le sondage (Niocène d'Angola; données: tabl.III.4.3). a: Estimation de la production par l'Indice de Production Estimée IPE

as Estimation de la production par a findice de production Estimee IPE

b: Estimation de la production par le Taux de Transformation calculé selon Pelet (1985).

FIGURES & TABLEAUX

CHAPITRE IV

FIGURES & TABLEAUX du CHAPITRE IV

Figures	&	Tableaux	du	ş	IV.2	•	٠	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	<u>44</u>
<u>Figures</u>	&	Tableaux	<u>du</u>	ş	<u>IV.3</u>	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	<u>50</u>
<u>Figures</u>	£	Tableaux	du	ş	<u>IV.4</u>	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	<u>57</u>

-+000+-

.

a. Vitesse en fonction de la concentration en réactifs

b. Vitesse en fonction de la concentration en produits

- Fig. IV.2.1 Evolution de la vitesse ∉ avec le temps de réaction, pour différents ordres de réaction *n* (modifié d'après Jungers, 1958).
 - a: Expression de la vitesse en fonction de la *diminution* de la concentration en *réactifs (a-x)* avec le temps.
 - b: Expression de la vitesse en fonction de l'augmentation de la concentration en produits (x) avec le temps.

ENERGIES DE LIAISON CHIMIQUE

GROUPE DE Composes	NOM ou Formule chimique	LIAISON Rompue	E. LIAISON (Kcal/mole)	REFERENCES
ACIDES AMINES	Sérine Phénylalaline Ihréonine A. Pyroglutamique	Dégradation par pyrolyse	29.3 30.8 33.8 35.8	Vallentyne (1964)
ACIDE GRAS nC22	CH ₃ (CH ₂) ₂₀ COOH	-COOH (hydrolyse en alcane nC ₂₁)	44.0	Johns & Shimoyama (1964)
	C ₆ H ₅ CH ₂ COOH	-соон	68	Weast (1973)
MOLECULES à FONCTIONS	CH ₃ O OCH ₃ C ₃ H7 OCH3 C ₂ H5 OCH3 CH3 OCH3	-OCH3 -OCH3 -OCH3 -OCH3	36 49 54 58.5	Jüntgen (1964) Jüntgen (1964) Jüntgen (1964) Jüntgen (1964)
OXYGENEES	C₅H₅S CH₃	-\$-	60	Weast (1973)
ou SOUFREES	СН₃ ОН С ₆ Н₅ ОН	-0H -0H	91 112	Weast (1973) Weast (1973)
$\begin{array}{c} & nC_{21} \\ HYDRO- & nC_{16} \\ CARBURES & nC_{12} \\ & nC_7 \\ SATURES & C_2 \\ (alcanes) & C_2 \\ & C_1 \end{array}$	CH ₃ (CH ₂) ₁₉ CH ₃ CH ₃ (CH ₂) ₁₄ CH ₃ CH ₃ (CH ₂) ₁₄ CH ₃ CH ₃ (CH ₂) ₁₀ CH ₃ CH ₃ (CH ₂) ₅ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ C ₂ H ₅ H CH ₃ H	С-С С-С С-С С-С С-С С-С С-Н С-Н	57 60 59-60 65 83-88 97.5 102	Johns & Shimoyama (1972) Voge & Good (1948) Voge & Good (1948) Appelby & al. (1947) Weast (1973); Jüntgen (1984) Jüntgen (1984) Jüntgen (1984)
HYDROCARBURES INSATURES	CH ₂ CH ₂ CH CH	C=C CEC	178 230	Weast (1973) Weast (1973)
C HYDROCARBURES AROMATIQUES	${}_{6}$ H ₅ C ₅ H ₄ CH ₂ - CH ₂ C ₅ H ₄ CH ₂ C ₆ H ₅ CH ₂ - CH ₂ C ₆ H ₅ C ₆ H ₅ CH ₂ - C ₆ H ₅ C ₆ H ₅ CH ₂ - C ₆ H ₃ C ₆ H ₅ - CH ₃ C ₆ H ₅ - C ₆ H ₅ C ₆ H ₅ - C	6H₃ C-C C-C C-C C-C C-C C-C C-C C-C	50 56 84 87 91 115 130	Jüntgen (1984)

Tabl. IV.2.1 — Energies de liaison chimique dans des molécules organiques. Pour les acides aminés et les alcanes, il s'agit de l'énergie d'activation de craquage des liaisons C-C par pyrolyse; réactions se produisant avec un ordre unitaire.

DIAGRAMME D'ENERGIE POTENTIELLE

Fig. IV.2.2. Energie potentielle et énergie d'activation dans une réaction chimique (d'après Solomon, 1972).

DIAGRAMME D'ARRHENIUS

Fig. IV.2.3. Diagramme d'Arrhénius (logarithme de la constante de vitesse K en fonction de l'inverse de la température Λ). Le coéfficient angulaire de la droite de régression est proportionnel à l'énergie d'activation E (R: constante des Gaz Parfaits).

DIAGRAMME DE FREEMAN & CARROLL

Fig. IV.2.4 : Diagramme de *Freeman & Carroll X - Y*. Le coefficient angulaire de la droite de régression est proportionnel à l'énergie d'activation *E*. L'ordonnée à l'origine est l'ordre de réaction *n*.

- Fig. IV.2.5. Exemples de courbes de réaction théoriques simulées à partir des paramètres cinétiques E, n et Log A calculés à partir de la courbe de pyrolyse expérimentale: courbes de pyrolyse du SO₂ de roches à kérogène.
 - a: courbe de réaction simple (une seule réaction)
 - b: courbe de réaction complexe (Plusieurs réactions superposées et/ou successives).

CALCUL DES PARAMETRES D'AJUSTEMENT <e> et <dTm>

- Fig. IV.2.6 Exemple du calcul de l'écart e et dI_m entre une courbe de pyrolyse expérimentale et une courbe théorique. Ecart e: écart entre les concentrations différentielles dZ (équation 19); Ecart dI_m: écart entre la température IMax du sommet de la courbe de pyrolyse expérimentale et de la température IM de la courbe théorique (équation 20). dZ: Valeur différentielle de genèse d'hydrocarbures par pyrolyse ("coups par tranche" normalisés).
 - ... : courbe de pyrolyse expérimentale (ex) de l'échantillon AAS 5202
 - ____: courbe de réaction théorique (*th*) simulée avec les paramètres *E*, *n* et *Log A* calculés à partir de la courbe expérimentale.

CONDITIONS DE PYROLYSE

CONDITIONS GEOLOGIQUES

a. Influence de l'ordre de réaction n

E=58 Kcal/mole, log A=17 s⁻¹ et n = 0 (1), 0.5 (2), 1.0 (3), 1.5 (4), 2.5 (5) et 4 (6).

b. Influence de l'énergie d'activation E

n=1.5, log A=17 s⁻¹ et E = 45 (1), 50 (2), 55 (3), 60 (4), 65 (5) et 70 (6) Kcal/mole.

c. Influence du facteur de fréquence A

PROGRAMMATION DE TEMPERATURE

PROGRAMME DE TEMPERATI	ECHELLE DE TEMPERATURE						
ROCK EVAL	ROCK EVAL	REELLE					
Température Initiale	(°C)	250	250				
Gradient de température	(°C/mn)	26.5	30.2				
Intervalle d'Intégration (se	(°C) condes)	5.035 ·* 11.4	5.74 11.4				
Température finale	(°C)	602	652				

Tabl. IV.3.1 - Correspondance entre l'échelle de température fournie par le Rock Eval et l'échelle de température réelle constituée à partir des mesures à l'aide d'une sonde thermique, dans la nacelle porte-échantillon.

Fig. IV.3.1 - Courbe de pyrolyse normalisée de l'échantillon AAB 2487 (Miocène d'Angola), avec le découpage en "tranches" *dT* de 5.74°C (gradient de température: 30.2°C/mn, temps d'intégration: 11.4 s).

ETUDE CINETIQUE DE LA PYROLYSE DU KEROGENE DE L'ECHANTILLON AAB 2487

Diagrammes de Freeman & Carroll

Fig. IV.3.2 - Diagrammes de Freeman & Carroll pour le pyrolysat du kérogène de l'échantillon AAB 2487 du Miocène d'Angola.

- a: Distribution des points (X,Y) sur le diagramme.
- b: Sélection de différents intervalles de linéarité, pour le calcul de la droite de régression. La pente de la droite est proportionnelle à l'énergie d'activation *E* (Kcal/mole).

ETUDE CINETIQUE DE LA PYROLYSE DU KEROGENE DE L'ECHANTILLON AAB 2487

CHOIX n°	*****	1	2	3	4	5
INTERVALLE DE LINEARITE						
Limites de température	•C	445 - 503	457 - 491	445 - 491	468 - 491	445 - 488
I Cumulé de réaction	2(%)	22.38 - 80.42	32.5 - 71	22.38 - 71	45.88 - 71	22.38 - 58.66
X de réaction concerné	DZ (%)	5B.Ø4	38.5	48.63	25.92	36.29
PARAMETRES CINETIQUES						
Energie d'activation	E(Kcal) 51.62	58.71	47.7	58.92	48.73
Ordre de réaction	n	1.88	1.77	1.74	2.86	1.65
Facteur de fréquence	Log A	14.05	13.97	13.79	15.83	13.61
PARAMETRES STATISTIQUES						
Coefficient de corrélation	r	.99629	.99441	.9982	.99426	.99859
Ecart type sur l'Energie	s(E)	27.11	16.14	14.3	16.32	5.78
Ecart type sur l'ordre	s(n)	.85	.57	.54	.51	.4
Ecart E (dér sec) - E (F. & C.)	đE	.35	2.44	2.45	2.74	3.73
Paramètre de linéarité		85.49	51.43	13.9	47.78	3.26
Ecart (Braun & Burnham, 1986)	e	.126	.169	.171	.176	. 196
Ecart (TMax exp TMax théor.)	dTe	5.7	5.7	5.7	5.7	5.7
Paramètre de choix		21.6	57.1	48.8	74.6	79.5
E/n		27.45	28.65	28.67	28.6	29.53
E/Log A		3.67	3.63	3.61	3.72	3.58
X réaction au TMax		Z: 51.88	1-Z): 48.12		
TMax expérimental calculé (°C)		473.86				
TMax expérimental observé (*C)		444				
Différence TMax calculé - observé (*)	.)	29.9				

Résultats du traitement des données cinétiques

Tabl. IV.3.2 - Tableau des résultats cinétiques calculés pour les cinq intervalles de linéarité sélectionnés à la fin du traitement informatique (pyrolysat du kérogène de l'échantillon AAB 2487 du Miocène d'Angola). L'intervalle de linéarité n°1 est celui qui le plus représentatif de la réaction globale.

Diagramme de Freeman & Carroll du meilleur résultat

Fig. IV.3.3 - Diagramme de Freeman & Carroll pour le pyrolysat du kérogène de l'échantillon AAB 2487 du Miocène d'Angola. Droite de régression pour l'intervalle de linéarité sélectionne après le traitement des données cinétiques.

ETUDE CINETIQUE DE LA PYROLYSE DU KEROGENE DE L'ECHANTILLON AAB 2487

Courbes de pyrolyse théoriques des 5 meilleurs résultats

Fig. IV.3.4. - Ajustement des courbes de réactions théoriques à la courbe de pyrolyse expérimentale du pyrolysat du kérogène, pour les cinq intervalles de linéarité sélectionnés à la fin du traitement des données cinétiques. Pyrolysat du kérogène de l'échantillon AAB 2487 du Miocène d'Angola (données cinétiques et paramètres d'ajustement: tabl.IV.3.3).

0401X n*		1 	2	3	4	5
INTERVALLE DE LINEARITE						
Listes de température	•0	416 - 451	416 - 485	416 - 474	416 - 497	416 - 462
X Cumulé de réaction	Z(Z) 11	.85 - 38.03	11.55 - 77.98	11.65 - 66.05	11.88 - 85.57	11.88 - 51.4
2 de réaction concerné	DZ (%)	26.15	66.1	54.17	74.69	39.58
PARAMETRES CINETIQUES						
Energie d'activation	E(Kcal)	34.59	35.28	34.83	35.91	33.72
Ordre de réaction	ħ	.99	1.87	.89	1.16	.ES
Facteur de fréquence	Log A	12.86	12.96	10.87	18.98	18.87
ARAVETREE STATISTICUES						
Coéfficient de corrélation	r	.97369	.98523	.98461	.98 627	.9211
Ecart type sur l'Energie	s(E)	28.99	44.64	33.79	46.37	28.18
Ecart type sur l'ordre	s(n)	2.65	2.19	2.22	2.25	2.33
Ecart E (der sec) - E (F. & C.)	с.	.3	1.78	3.2	4.27	4.28
Paramètre de linéarité		1463.45	1463.47	1154.47	1385.16	833.67
Ecart (Braun & Burnhas, 1986)	e	.625	.267	.629	.26	.629
Ecart (THax exp THax théor.)	dīa	11.5	5.7	11.5	5.7	11.5
Paramètre de choix		3651.8	92	2378	55.6	3793.3
E/n		34.94	32.97	36.23	32.95	39.67
E/Log A		3.18	3.21	3.12	* 3.27	3.1
reaction au Thay		2: 58.94	(1-7)	: 41.85		***
TRax expérimental calculé (*?)		468.12				
Plax experimental observe (*C)		B				
Nifférence TKay calculé - observé (°C	3	468.1				

Résultats du traitement des données cinétiques

Tabl. IV.3.3 - Tableau des résultats cinétiques calculés pour les cinq intervalles de linéarité sélectionnés à la fin du traitement informatique (pyrolysat des résines & asphaltènes de l'échantillon AAB 2487 du Miocène d'Angola). L'intervalle de linéarité n°4 est le plus représentatif de la réaction globale.

Diagramme de Freeman & Carroll du meilleur résultat

Fig. IV.3.5 - Diagramme de *Freeman & Carroll* pour le pyrolysat des résines & asphaltènes de l'échantillon AAB 2487 du Miocène d'Angola. Droite de régression pour l'intervalle de linéarité sélectionné après le traitement des données cinétiques.

ETUDE CINETIQUE DE LA PYROLYSE DES RESINES & ASPHALTENES DE L'ECHANTILLON AAB 2487

Courbes de pyrolyse théoriques des 5 meilleurs résultats

Fig. IV.3.6. - Ajustement des courbes de réactions théoriques à la courbe de pyrolyse expérimentale des résines & asphaltènes de l'échantillon AAB 2487 du Miocène d'Angola, pour les cinq intervalles de linéarité sélectionnés à la fin du traitement des données cinétiques (données cinétiques et paramètres d'ajustement: tabl.IV.3.4).

REPRODUCTIBILITE	DES	PARAMETRES	CINETIQUES
------------------	-----	------------	------------

VALEURS	ANALYSE RO	oche brute	ANALY	ANALYSE EN PYROLYSE COMPARATIVE				
ECARTS TYPES (s%)	Cycle I AAB 0505	Cycle II REF 1913	Cycle II AAB 1075	Cycle II AAB 2487	Cycle II AAF 3126	Cycle II AAF 3128		
<u>KEROGENE</u> Nombre de valeurs	11	29	6	6	6	6		
PARAMETRES CINETIQUES E (énergie d'activation) n (ordre de réaction) Log A (fact. fréquence) RAPPORTS	7.29 9.63 6.74	5.31 7.58 4.12	3.01 4.47 2.38	1.58 2.88 1.32	2.85 4.34 2.81	0.86 1.45 0.77		
E/n E/Log A	7.80 0.21	6.79 1.55	3.44 0.90	2.37 0.62	3.04 0.57	1.63 0.19		
<i>RESINES & ASPHALTENES</i> Nombre de valeurs				5	5			
PARAMETRES CINETIQUES E (énergie d'activation) n (ordre de réaction) Log A (fact. fréquence) RAPPORTS				5.32 8.84 5.07	4.58 11.23 6.27			
E/n E/Log A				7.28 2.35	15.94 2.12			
<u>MOYENNES DES PARAMETRES</u> <u>ROCK EVAL</u>								
COT (%) IH (mg HC/g Corg.) TMax (°C) S2 (mg HC/g roche) S2'(mg HC/g roche)	2.80 428 8.60	2.09 336 433 6.92	2.94 298 425 8.75 1.12	2.18 218 444 4.76 1.33	1.34 579 437 7.77 3.09	11.27 712 442 81.15 5.12		

Tabl. IV.3.4 - Reproductibilité des paramètres cinétiques de la pyrolyse, déterminés selon la méthode de Freeman & Carroll, avec l'aide du traitement informatique (voir annexe IV.2. pour les données détaillées).

.

DONNEES CINETIQUES DE LA PYROLYSE DE ROCHES à KEROGENE

.

A : Réaction Principale

TYPE	PROVENANCE	Ref.	°C/mn	METHODE de CALCUL	E(Kcal)	n	Log A
I - IIa	· <u>CHINE</u> Fushun Fushun Lean Fushun Rich Maoming Jin Tang Maoming Yang Jiao	1 2 2 2 2 2	1-6 5 5 5 5 5	Friedman (1965) Arrhénius ordre 1	35.32 55.72 47.63 38.76 31.20	1.13 1 1 1 1	7.89 15.51 12.60 9.97 7.67
I - IIa	<u>AUSTRALIE</u> Nagoorin Condor Condor Carbonaté Stuart Duaringa Rundle Condor Nagoorin	3 3 3 3 3 3 4 4 4	3 3 3 3 3 5 5 5 5	Anthony & Howard (1976) Anthony & Howard (1976)	48.10 49.27 55.49 51.43 53.84 41.11 47.80 41.35	1 1 1 1 1	12.40 12 14 13 14
IIa	<u>GRANDE - BRETAGNE</u> Kimméridgien (moyenne de 8 valeurs)	5	12	Arrhénius - ordre 1	50.60	1	13.45
Ι	<u>COLORADO</u> Green River Green River Green River Green River Green River	6 7 8 9 10 11	4 0 0 2 4	Arrhénius Arrhénius Arrhénius Van Heek & al. (1979) Anthony & Howard (1976) Friedman (1965)	40 - 60 46.72 42.44 52.34 42.00 59.27	1 1 1.1 1.51	10.31 13.45 11.48 12.55

B : Réaction Secondaire

N

TYPE	PROVENANCE	Ref.	°C/mn	METHODE CINETIQUE	E(Kcal)	n	Log A
IIa I	Kimméridgien Green River	5	12	Arrhénius	9.98 10.65	1 1	1.18 1.69

Tabl. IV.4.1 - Données cinétiques de la dégradation thermique par pyrolyse de quelques roches à kérogène en montée progressive de température ou à température isotherme. Cinétique globale de la réaction principale (A) et de la réaction secondaire (B). 1- Yang & Sohn, 1984; 2- Wang & al., 1984; 3- Ekstrom & al., 1983; 4- Ekstrom & Callaghan, 1987; 5- Williams, 1985; 6- Weitkamp & Gutberlet, 1968; 7- Johnson & al., 1975: 8- Braun & Rothman, 1975; 9- Campbell & al., 1978; Campbell & al., 1980b; 11- Wen & Kobylinski, 1983a; 12- Braun & Burnham, 1986.

DONNEES CINETIQUES DE LA PYROLYSE DE CHARBONS

% M.V.	TMax °C	Ref	°C/mn	Méthode cinétique	E(Kcal)	n	log A
52.0 41.0 37.0 27.9 19.9 12.2 6.0 1.0	370 530 515 560 570 540 620 700	1	15	Arrhénius. ordre 1	13.4 17.2 20.6 27.3 23.7 29.7 35.2 45.5		
39.9 39.8 38.1 35.3		2	20	Coats & Redfern (1964)	18.9 23.4 29.2 23.9	2.5 2.3 2.4 2.9	5.20 6.49 8.28 7.62
		3	3	Jüntgen (1984)	32.6	1.3	5.70

Tabl. IV.4.2 - Données cinétiques de la dégradation thermique de charbons, en programmation de température: cinétique globale de la réaction principale. 1- Cumming, 1984; 2- Wen & Kobylinsky, 1983b; 3- Jüntgen, 1984)

DONNEES CINETIQUES DE LA PYROLYSE DE KEROGENES DE CHINE

ECHANTILLON	S	Résul	Résultats de WANG, QIAN et WU, 1984 Calcul avec FRE					
Roche à Kérogène (CHINE)	Type	Rock-Eval	Param. cinétiques	Ajustement	Param. cinétiques	Ajustement		
	M.O.	IH TMax	E(Kcal) n Log A	TMax dĭ _m e	E(Kcal) n Log A	TMax dT _m e		
FUSHUN (rich) FUSHUN (lean) MAOMING J.T. MAOMING Y.J.	I I Ila Ila	1088 415 954 422 785 402 607 396	55.721.015.5147.631.012.6038.761.09.9731.201.07.67	51095112550128645721675461622049	58.85 0.50 19.48 52.67 0.60 17.19 47.56 0.69 15.77 35.66 0.97 11.57	4251014.843083.26412103.0840481.66		

Tabl. IV.4.3 - Résultats des calculs cinétiques effectués sur des courbes de pyrolyse de roches à kérogène de Chine, par Wang & al. (1984); et par la méthode de calcul selon Freeman & Carroll (1958). IH: Indice d'Hydrogène (mg HC/g Corg.), IWax: température au sommet du pic S2, E: énergie d'activation (Kcal/mole), n: ordre de réaction, Log A: facteur de fréquence (s⁻¹), IWax, dI_m et e: test d'ajustement de la courbe simulée à la courbe expérimentale de Wang & al.

Fig. IV.4.1 - Courbes de pyrolyse expérimentales et théoriques de différents types de roches à kérogène, pour l'étude des relations entre la forme des courbes de pyrolyse et leurs paramètres cinétiques *E* (énergie d'activation, Kcal/mole) et *n* (ordre de réaction).
ROCHES à	TYPE	İNDI	CES	PARAMETR	ES CINE	TIQUES	PARAMETRES DE FORME				
(codes)	M.O.	II	IM	E(Kcal)	n	E/n	% R⊺m	IL(°C)	RTm/IL		
AAD 0800 AAU 3370 AAO 3561 AAO 3537 AAO 3450 AAB 2487 EZH 2310 AAT 0786	Ia Ib Ib IIa IIb IIb III IV	1.0 1.0 1.3 2.0 2.4 2.6 2.9 4.0	1.5 2.6 3.1 2.8 3.0 2.8 2.1 4.7	39.93 73.31 59.02 55.25 45.98 51.39 47.85 52.61	0.58 1.26 1.30 1.34 1.44 1.72 2.56 3.40	68.84 59.60 45.40 41.23 31.98 29.88 18.69 15.47	72.51 65.51 62.83 62.56 55.55 50.49 41.81 37.94	26.4 21.1 26.0 27.9 31.4 36.4 40.7 57.90	2.75 3.10 2.42 2.24 1.77 1.39 1.03 0.66		

CINETIQUE ET FORME DES COURBES DE PYROLYSE

Tabl. IV.4.4 - Relations entre les paramètres cinétiques des courbes de pyrolyse et leurs paramètres de forme, en fonction du type de matière organique et pour des roches à kérogène d'un niveau de maturité équivalent à la catagenèse ou à la fin de la diagenèse. II: Indice de Type, IM: Indice de Maturité, E: énergie d'activation, n: ordre de réaction, RTM: pourcentage cumulé de réaction au sommet de la courbe de pyrolyse expérimentale (pic S2), IL (Indice de Largeur): largeur du pic S2 à mi-hauteur, en °C.

DIAGRAMME RTm - n (roches à kérogène)

Fig. IV.4.2a - Relations entre l'indice de symétrie RI_{n} et l'ordre de réaction n des courbes de pyrolyse des roches à kérogène de la figure IV.4.1 et du tableau IV.4.4.

DIAGRAMME IL - E (roches à kérogène)

Fig. IV.4.2b - Relations entre l'indice de largeur *IL* et l'énergie d'activation *E* des courbes de pyrolyse des roches à kérogène de la figure IV.4.1 et du tableau IV.4.4.

DIAGRAMME (RTm/IL) - (E/n) (roches à kérogène)

Fig. IV.4.2c - Relations le rapport de forme (*RT_/IL*) et le rapport cinétique (*E/n*) des courbes de pyrolyse des roches à kérogène de la figure IV.4.1 et du tableau IV.4.4.

Fig. IV.4.3a & b - Caractérisation géochimique du kérogène des échantillons de référence de différents types (données à l'annexe IV.3.1). Lignes d'iso-réflectance de la vitrinite R_o et de même Indice de Maturité IM.

a: Diagramme *IH-THax* (mesurés sur roches extraites).

b: Diagramme *IH-IO* (IO mesuré sur roches traitées).

Fig. IV.4.3c - Caractérisation géochimique du kérogène des échantillons de référence de différents types. Diagramme *PI-IH* (pyrolysat de roches extraites, données à l'annexe IV.4).

TY	PE ORIGINE
•	a Lacustre (Green)
	b Lacustre (^{Angola}) Bas Zaïre)
0	a Marine
*	II b Mixte
	III Terrestre
	Lignites & Charbons

Fig. IV.4.4. - Caractérisation cinétique du kérogène des échantillons de référence de différents types (données à l'annexe IV.3.1). Lignes d'iso-réflectance de la vitrinite R_o et de même Indice de Maturité IM. a: Diagramme IH-E.

b: Diagramme IH-n.

DIAGRAMME E - IO (roches à kérogène)

DIAGRAMME PI - n (roches à kérogène)

Fig. IV.4.6. - Caractérisation cinétique du kérogène des échantillons de référence de différents types dans un diagramme *PI-n* (données à l'annexe IV.3.1).

DIAGRAMME E - TMax

(roches à kérogène, types I & II)

Fig. IV.4.7a & b. - Caractérisation cinétique du kérogène des échantillons de référence de différents types dans un diagramme *E-TWax* (données à l'annexe IV.3.1). Lignes de même Indice de Naturité *IM*.

- a: Roches à kérogène de type I, IIa et IIb.
- b: Roches à kérogène de type III, lignites et charbons.

DIAGRAMME n - TMax (roches à kérogène)

Fig. IV.4.7c - Caractérisation cinétique du kérogène des échantillons de référence de différents types dans un diagramme *n-TMax* (données à l'annexe IV.3.1). Lignes de même Indice de Maturité *IM*.

Fig. IV.4.8. - Caractérisation cinétique du kérogène des échantillons de référence de différents types dans un diagramme *n-THax* (données à l'annexe IV.3.1). Lignes d'iso-réflectance de la vitrinite R_o et de même Indice de Maturité IM. a: Diagramme n-E.

Fig. IV.4.9. - Caractérisation cinétique du kérogène des échantillons de référence de différents types (données à l'annexe IV.3.1). Lignes de même Indice de Maturité IM.
a: Diagramme (E/n)-THax.
b: Diagramme (E/log A)-THax.

CINETIQUE DE ROCHES à KEROGENE VIEILLIES PAR PYROLYSE SECHE

INDICE d'HYDROGENE IH (mg HC/g Corg)

400-

200-

0

0

Πb

Ш

 \sim

20 40 60 RAPPORT CINETIQUE E (kcal)/ n

Fig. IV.4.11. - Caractérisation cinétique du kérogène de références de différents types vieillies par pyrolyse sèche (données à l'annexe IV.5.1). a: Diagramme n-E. b: Diagramme IH-(E/n).

80

CINETIQUE DE ROCHES à KEROGENE VIEILLIES PAR HYDROPYROLYSE

a: Diagramme IH-IMax. b: Diagramme IH-E. c: Diagramme n-E. d: Diagramme IH-(E/n).

100 10 PI (%nC9-30HC × IH /1000). 11sz 4 11/110 10 111_{PP} ۱ I I INDEX PARAFFIN .1-0 1000

DIAGRAMME PI - IH

Fig. IV.4.13 - Caractérisation d'une roche à kérogène de type I par l'Index Paraffinique *PI*, dans un diagramme *PI-IH* données à l'annexe IV.5.2). P: Paraffinique, PN: Paraffinique-Naphténique et PP: Phénolique-Paraffinique.

ABAQUES POUR LA CARACTERISATION CINETIQUE DU KEROGENE

DIAGRAMME n - E

Fig. IV.4.14 - Abaques pour la caractérisation cinétique du type et de l'origine du kérogène d'échantillons de roche. Lignes d'iso-réflectance de la vitrinite R_o et de même Indice de Maturité IH.
 a: Diagramme n-E.
 b: Diagramme IH-(E/n).

EVOLUTION AVEC LA MATURATION, DE L'ENERGIE D'ACTIVATION DU KEROGENE ET DES RESINES & ASPHALTENES

Fig. IV.4.15 - Evolution comparée des valeurs d'énergie d'activation du kérogène et des résines & asphaltènes, en fonction de l'Indice de Maturité IM et pour les échantillons de type I, IIa et IIb-III (données aux annexe IV.3.1 & 2).

Fig. IV.4.16 - Caractérisation cinétique des résines & asphaltènes des échantillons de référence de différents types (données à l'annexe IV.3.2). a: Diagramme n-E (limites de la zone des résines & asphaltènes). b: Diagramme IH-TMax (lignes de même Indice de Maturité IM).

FIGURES & TABLEAUX

CHAPITRE V

FIGURES & TABLEAUX du CHAPITRE V

• •

Figures	<u>&</u>	Tableaux	du	ş	<u>v.1</u>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	<u>78</u>
Figures	\$	Tableaux	du	ş	<u>v.2</u>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	<u>82</u>
Figures	<u>&</u>	Tableaux	du	ş	<u>v.</u> 3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	<u>110</u>
Figures	å	Tableaux	du	ş	<u>v.4</u>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	<u>117</u>

-+000+-

Fig. V.1.1 - Situation géographique du bassin du Bas Congo - Gabon et du secteur étudié du Bas Zaïre - Angola (modifié d'après Perrodon, 1980).

DEVELOPPEMENT D'UN BASSIN DE MARGE CONTINENTALE PASSIVE

Fig. V.1.2 - Schéma du développement d'un bassin de marge continentale passive (d'après Perrodon, 1980).
a: Formation d'un rift en domaine continental suite à un mouvement d'extension de la croûte terrestre.
b: Accélération des mouvements d'extension et apparition de croûte océanique dans le centre du bassin.
c: Ouverture océanique et isolation des bassins de marge passive.

BORDURE CONTINENTALE DU L'AFRIQUE OCCIDENTALE

Fig. V.1.3 - Unités majeures de la bordure continentale de l'Afrique occidentale et de la Sierra Leone (d'après Emery & al., 1975).

LITHOSTRATIGRAPHIE DU BAS ZAIRE - ANGOLA

Fig. V.1.4 - Echelle lithostratigraphique du secteur Bas Zaïre - Angola (modifié d'après Meijer, 1973, 1975 & 1979 et Boutefeu, 1979).

EVOLUTION LITHOSTRATIGRAPHIQUE E- W DE L'INFRASALIFERE

Fig. V.1.5 - Schéma lithostratigraphique de l'Infrasalifère du secteur Bas Zaïre - Angola, avec l'évolution des faciès du Bucomazi d'Est en Ouest (d'après Boutefeu, 1979). Position schématique des sondages étudiés, ayant atteint l'Infrasalifère.

1

SECTEUR PETROLIER DU BAS ZAIRE - ANGOLA

Fig. V.2.1 - Carte schématique du secteur étudié du Bas Zaïre - Angola, en bordure continentale du bassin de Bas Congo - Gabon (d'après Boutefeu, 1979 et Armstrong, 1984). Situation des coupes étudiées et positionnement des sondages.

Fig. V.2.2a - Caractérisation géochimique des roches à kérogène du Bas Zaïre - Angola: Diagrammes *IH-IO* (10 mesuré sur roches décarbonatées et 1H, sur roches extraites).

Fig. V.2.2a (suite) - Caractérisation géochimique des roches à kérogène du Bas Zaïre - Angola: Diagrammes IH-IO (IO mesuré sur roches décarbonatées et IH, sur roches extraites).

Fig. V.2.2b - Caractérisation géochimique des roches à kérogène du Bas Zaïre - Angola: Diagrammes *IH-TMax* (roches extraites). Lignes d'iso-réflectance de la vitrinite R_o et de même Indice de Maturité *IN*.

DIAGRAMMES IH - TMax

Fig. V.2.2b (suite) - Caractérisation géochimique des roches à kérogène du Bas Zaïre - Angola: Diagrammes IH-IMax (roches extraites). Lignes d'iso-réflectance de la vitrinite R, et de mème Indice de Maturité IM.

PYRO-CHROMATOGRAMMES S2 DE ROCHES à KEROGENE

Fig. V.2.3 - Pyro-chromatogrammes des roches à kérogène du sondage AAE (fraction S2, pyrolysat du kérogène).
a: n-alcane en C₇₋₃₀; ê: n-alcènes en C₇₋₂₅.
Alcanes isoprénoïdes A: ipC₁₃, B: ipC₁₄, C: ipC₁₅, D: ipC₁₆, E: ipC₁₈, F: ipC₁₉ (pristane), G: ipC₂₀ (phytane), F': Pristène-1, F": Pristène-2.
Hydrocarbures aromatiques Bz: Benzène, To: Toluène, X: Xylène, I: Indane, T: Iétraline, N: Naphtalène.

CARACTERISTIQUES DES PYROLYSATS S2 DE ROCHES à KEROGENE

S2 R. Extr.	INDICES	CALCUL de 1	RAPPORTS						
(codes)	IT IM	Alca. Alcè.	Alca+Alcè IH	ІР Туре	Alcè/Alca	nC ₁₇ S			
AAE 0680	2.2 0.7	10.26 10.55 6.22 6.83 7.00 9.42 11.12 9.08 11.63 10.25	20.81 543	11.30 II _{PN}	1.03	0.96			
AAE 1928	2.8 1.5		13.05 351	4.58 II/III _P	1.10	0.62			
AAE 2022	2.1 2.6		16.42 461	7.57 II _{PN}	1.35	0.39			
AAE 2736	1.3 2.6		20.20 720	14.54 I _{PN}	0.82	0.80			
AAE 2770	1.1 2.6		21.88 733	16.04 I _{PN}	0.88	0.68			
AAE 3128	1.1 2.6	8.33 7.08	15.41 715	11.02 I _{PN}	0.85	0.49			
AAA 2015	2.4 3.0	8.85 7.55	16.40 333	5.46 II/III _P	0.85	0.26			

Tabl. V.2.1 - Données de pyro-chromatographie de roches à kérogène des sondages AAE et AAA du Bas Zaïre - Angola (fraction S2, pyrolysat du kérogène). Alca.: pourcentage d'alcanes nC₉₋₃₀ dans le pyrolysat, Alcè.: pourcentage d'alcènes nC₉₋₃₀ dans le pyrolysat, IH: Indice d'Hydrogène (mg HC/g Corg.), IP: Indice de Type (Larter & Senftle, 1985), Type: appréciation du type de kérogène dans le diagramme PI-IH (fig.VI.2.4): p = Paraffinique, PN = Paraffinique-Naphténique.

Fig. V.2.4. - Caractérisation des roches à kérogène dans un diagramme Paraffin Index PI - Indice d'Hydrogène IH (méthode de Larter & Senftle, 1985). p: Paraffinique, pN: Paraffinique-Aromatique, pP: Phénolique-Paraffinique

Fig. V.2.5 - Etude des roches à kérogène d'après les données de pyro-chromatographie (pyrolysat S2, annexe V). a: Diagramme des rapports [Pristène-(1+2) / nC₁₇s] - [nC₉₋₃₀ (alcène / alcane)] (s = alcane+alcène). b: Diagramme des rapports [Pristène-(1+2) / nC₁₇s] - [ipC₁₈s / nC₁₆s].

ABAQUES POUR LA CARACTERISATION CINETIQUE DU KEROGENE (RAPPEL)

Fig. V.2.6. - Diagrammes de référence pour la caractérisation cinétique de l'origine et du type de la matière organique des roches à kérogène, en fonction des paramètres E, n et IH (voir § IV.4.3.5 pour des explications détaillées). Lignes d'iso-réflectance de la vitrinite Ro et de même Indice de Maturité IM.

b. SONDAGE AAP, AAF & AAO

BLACK SHALES AAP I IT= 1.7-2.6 CHELA AAP I IT= 1.0

BUCOMAZ Organic Zon	e
AAO) - 2.5) - 2.2) - 1.4
$AAF \begin{cases} \Delta & \text{IT} = 2.0 \\ \Delta & \text{IT} = 1.0 \end{cases}$	0 2.1 i 1,4

Fig. V.2.7b - Caractérisation cinétique de la matière organique des roches à kérogène dans des diagrammes n-E et IH-(E/n). Roches à kérogène des sondages AAP, AAO et AAF. Lignes d'iso-réflectance de la vitrinite Ro et de même Indice de Maturité IM.

CARACTERISATION CINETIQUE DES ROCHES à KEROGENE

Sondage AAP		Calcul entre 1	2 & 50% de	réaction	Calcul entre 40 et 90% de réaction							
(m)	IT	E(Kcal) n Log	E/n	e dī,	E(Kcal) n Log A	E/n e dīm						
0830 0850 0870	2.3 2.6 2.5	27.42 1.92 7.7 27.59 1.79 8.0 30.10 2.11 8.2	9 14.28 1 15.43 9 14.26	0.11 0 0.09 2.9 0.11 5.7	16.17 0.95 5.97 17.07 0.98 6.17 13.83 0.88 5.42	17.020.1417.217.410.1514.315.710.2617.3						
0870.1	2.2				17.92 0.92 6.51	19.47 0.10 5.7						

SONDAGE AAP (niveau 830-870.1 m)

Tabl. V.2.2. Paramètres cinétiques calculés pour quelques échantillons de roche à kérogène du sondage AAP. Les valeurs pour lesquelles les écarts e et dI, sont les plus faibles, représentent le mieux la courbe de réaction expérimentale (caractère gras).

> IH - (E/n)DIAGRAMMES n - Eet

Fig. V.2.8 - Caractérisation cinétique de la matière organique de quelques roches à kérogène des Black Shales du sondage AAP. Le kérogène des échantillons AAP 0830, 0850 et 0870 est constitué d'un mélange de matière organique d'origine terrestre et de matière organique d'origine marine. L'échantillon AAP 0870.1 est constitué uniquement de matière organique d'origine marine.

Lignes d'iso-réflectance de la vitrinite Ro et de même Indice de Maturité IM.

AJUSTEMENT DE COURBES DE REACTION THEORIQUES

a: Echantillon AAP 0870

b: Echantillon AAP 0870.1

Fig. V.2.9 - Ajustement des courbes théoriques des échantillons AAP 0870 et AAP 0870.1 à leurs courbes de pyrolyse expérimentales (données cinétiques : tabl. V.2.2)

a: <u>Echantillon AAP 0870</u>. Ajustement de la courbe théorique à la courbe expérimentale. L'ajustement est meilleur lorsque la courbe théorique est simulée avec les paramètres cinétiques calculés entre 12 et 50% de réaction (n > 2, typique d'une matière organique d'origine terrestre). L'ajustement est moins bon lorsqu'elle est simulée avec les paramètres calculés entre 40 et 90% de réaction (n < 1, typique d'une matière organique d'origine marine)

b: <u>Echantillon AAP 0870.1</u>. Ajustement de la courbe théorique à la courbe expérimentale, avec les paramètres cinétiques calculés entre 40 et 90 % de réaction (n < 1, typique d'une matière organique d'origine marine).

Fig. V.2.10 (début) - Courbes de pyrolyse comparative d'échantillons des sondages AAE et AAF du secteur pétrolier du Zaïre - Angola. Fractions S1: hydrocarbures légers, S1': hydrocarbures lourds, S2': résines & asphaltènes, S2: kérogène.

Fig. V.2.10 (suite) - Courbes de pyrolyse comparative d'échantillons des sondages AAE et AAF du secteur pétrolier du Bas Zaïre - Angola. Fractions S1: hydrocarbures légers, S1': hydrocarbures lourds, S2': résines & asphaltènes, S2: kérogène.

BUCOMAZI Organic Zone

Fig. V.2.10 (fin) - Courbes de pyrolyse comparative d'échantillons des sondages AAE et AAF du secteur pétrolier du Bas Zaïre - Angola. Fractions 51: hydrocarbures légers, 51': hydrocarbures lourds, 52': résines & asphaltènes, 52: kérogène.

BITUME DES FORMATIONS DU BAS ZAIRE - ANGOLA

Fig. V.2.11 - Caractérisation du bitume des formations du Bas Zaïre - Angola par les valeurs moyennes des indices IAH et IQH obtenues en pyrolyse comparative. Les diagrammes en barre correspondent aux valeurs moyennes de ces indices pour chaque formation et par sondage. IAH: proportion d'hydrocarbures dans le bitume (S1+S1')/(S1+S1'+S2'), IQH: proportion d'hydrocarbures dans l'ensemble des hydrocarbures S1/(S1+S1').

Fig. V.2.12 (début) - Pyro-chromatogrammes du bitume des échantillons du sondage AAE (fractions S1+S2 du bitume: hydrocarubres libres ou adsorbés de C₁₀ à C₃₅ + pyrolysat des résines & asphaltènes). *a*: n-alcane en C₇₋₃₀; *è*: n-alcènes en C₇₋₂₅. *Alcanes isoprénoïdes A*: ipC₁₃, *B*: ipC₁₄, *C*: ipC₁₅, *D*: ipC₁₆, *E*: ipC₁₈, *F*: ipC₁₉ (pristane), *G*: ipC₂₀ (phytane), *F'*: Pristène-1, *F"*: Pristène-2.

Hydrocarbures aromatiques Bz: Benzène, To: Toluène, X: Xylène, I: Indane, T: Tétraline, N: Naphtalène.

Fig. V.2.12 (fin) - Pyro-chromatogrammes du bitume des échantillons du sondage AAE (fractions S1+S2 du bitume: hydrocarbures libres ou adsorbés de C₁₀ à C₃₅ + pyrolysat des résines & asphaltènes). a: n-alcane en C₇₋₃₀; è: n-alcènes en C₇₋₂₅. Alcanes isoprénoïdes A: ipC₁₃, B: ipC₁₄, C: ipC₁₅, D: ipC₁₆, E: ipC₁₈, F: ipC₁₉ (pristane), G: ipC₂₀ (phytane), F': Pristène-1, F": Pristène-2. Hydrocarbures aromatiques J: Iétraline, N: Naphtalène.

Fig. V.2.13 - Etude des hydrocarbures libres des échantillons du Bas Zaïre - Angola d'après les rapports Pristane/nC₁₇ et Phytane/nC₁₈.

DIAGRAMME TMax Résines & asphaltènes - TMax Kérogène

Fig. V.2.14 - Relations entre les températures *IMax* des résines & asphaltènes (pic S2') et des roches à kérogène extraites (pic S2).

BLACK SHALES

AAP | IT = 1.7 - 2.6

> Echantillons des Black Shales et du Bucomazi Organic Zone des sondages AAE, AAF, AAO et AAP.

Lignes de même Indice de Maturité IM.

Fig. V.2.15b - Caractérisation cinétique de l'origine des résines & asphaltènes des bitumes dans des diagrammes *n-E* et

AAG

Echantillons des Black Shales et du Bucomazi gréseux des sondages AAA et AAG. Lignes de même Indice de Maturité IM.

ROCHES RESERVOIRS

Fig. V.2.15c - Caractérisation cinétique de l'origine des résines & asphaltènes des bitumes dans des diagrammes n-E et (E/n)-TMax.
Echantillons des roches réservoirs des sondages AAE, AKA et ALA.
Lignes de même Indice de Maturité IM.

.

Fig. V.2.16 (début) - Pyro-chromatogrammes des résines et asphaltènes du bitume des échantillons du sondage AAE (fractions S2 du bitume: superposition des hydrocarbures libres ou adsorbés de C₁₀ à C₃₅ aux hydrocarbures du pyrolysat des résines & asphaltènes (doublets alcanes-alcènes visibles jusque C₁₇). *a*: n-alcane en C₇₋₃₀; *ê*: n-alcènes en C₇₋₂₅.


```
BUCOMAZI Organic Zone
```


Fig. V.2.16 (fin) - Pyro-chromatogrammes des résines et asphaltènes du bitume des échantillons du sondage AAE (fractions S2 du bitume: superposition des hydrocarbures libres ou adsorbés de C₁₀ L C₃₅ aux hydrocarbures du pyrolysat des résines & asphaltènes (doublets alcanes-alcènes visibles jusque C₁₇). *a*: n-alcane en C₇₋₃₀; *è*: n-alcènes en C₇₋₂₅.

Alcanes isoprénoïdes A: ipC_{13} , B: ipC_{14} , C: ipC_{15} , D: ipC_{16} , E: ipC_{18} , F: ipC_{19} (pristane), 6: ipC_{20} (phytane), F': Pristène-1, F": Pristène-2.

Hydrocarbures aromatiques Bz: Benzène, To: Toluène, X: Xylène, J: Indane, T: Tétraline, N: Naphtalène.

CARACTERISATION DES RESINES & ASPHALTENES PAR PYRO-CHROMATOGRAPHIE

Fig. V.2.17 - Etude des résines & asphaltènes d'après les données de pyro-chromatographie.

a. Diagramme des pourcentages relatifs d'isoprénoïdes et d'aromatiques.

b. Diagramme des rapports [Pristène-(1+2) / nC175] - [ipC105 / nC165] (s=alcane+alcène).

POTENTIELS PETROLERS PRODUITS, EXPULSES ET ACCUMULES

Fig. V.3.1. - Diagrammes en barre des valeurs moyennes des potentiels pétroliers et des teneurs en bitume des formations du Bas Zaïre - Angola (10°T/Km²). Le Potentiel Pétrolier Initial (S2_o) est subdivisé en Potentiel Pétrolier résiduel (S2_{res}) et en Potentiel Produit (S2_{pr}), lui-même subdivisé en Bitume en Place et en Bitume Expulsé (S2_{exp}). Le Bitume Accumulé provient de l'extérieur de la formation considérée.

CARACTERISATION DES FORMATIONS DE ROCHES MERES DU BAS ZAIRE - ANGOLA

Fig. V.3.2 - Diagrammes en barre des valeurs des Taux de Production $(S2_{pr}/S2_o)$, d'Expulsion $(S2_{oxp}/S2_{pr})$, de Transfert (bitume transfert interne/S2_{pr}), d'Immobilisation (bitume non mobilisé/S2_{pr}) et d'accumulation $(S2_{oxc}/Bitume en place)$, pour les formations du Bas Zaire - Angola (valeurs à l'annexe V.3.6)

MODELES DE LA PRODUCTION ET DE LA MIGRATION DU PETROLE DANS LES ROCHES MERES ET LES ROCHES RESERVOIRS

Fig. V.3.3 - Modèles de la production et de la migration du pétrole dans les formations de roches mères et de roches réservoirs. Les modèles présentent schématiquement quatre échantillons, pour visualiser la destination du pétrole produit par le kérogène et l'origine du pétrole accumulé, dans chaque échantillon pris isolément. La classification des propriétés de roches mère ou de roches réservoirs des formations dépend du bilan global de la production, de l'immobilisation, du transfert et de l'accumulation du pétrole de l'ensemble des échantillons. Celui-ci est exprimé en S2_{exp} (pétrole expulsé de l'ensemble de la formation). La classification en types A, B et C est reprise à l'organigramme du tabl.V.3.1).

MODELES DE LA PRODUCTION ET DE LA MIGRATION DU PETROLE DANS LES ROCHES MERES ET LES ROCHES RESERVOIR

Bilan: S2_{exp} ou S2_{acc} Faible à Nul

Fig. V.3.3 - Modèles de la production et de la migration du pétrole dans les formations de roches mères et de roches réservoirs (suite).

Tabl. V.3.1 - Organigramme pour la classification des formations d'après les valeurs des Taux d'Expulsion, d'Accumulation, d'Immobilisation et de Transfert ainsi que d'après la proportion et la quantité de bitume en place. Les exemples donnés proviennent du secteur Bas Zaïre - Angola (valeurs à l'annexe V.3.6).

CLASSIFICATION DES FORMATIONS DU BAS ZAIRE - ANGOLA D'APRES LEURS CARACTERISTIQUES PETROLIERES

FORMATIONS	SONDAGE (code)	PROFONDEUR (m)	CL/	ASSIFICATION /	CARACTERISTIQUES
<u>IABE</u>	AAP Aap	592- 890 890-1234 592-1234	C1 <u>A2</u> B2	Roche réservoir <u>Roche mère active</u> Roche mère potentielle	à Roche mère interne <u>à Expulsion moyenne</u> à Transfert interne
lertiaire- Crétacé (Black Shales)	AAE Aae	558- 770 <u>770-1190</u> 558-1190	A2 <u>B2</u> B2	Roche mère active <u>Roche mère potentielle</u> Roche mère potentielle	à Expulsion moyenne à Transfert interne à Transfert interne
<u>L I AWENDA</u>	AAE	1190-1311	A1	Roche mère active	à Expulsion forte
<u>KINKASI</u>	AAE Aka Ala	1311-1876 1097-1267 1198-1386	D1 C2 C2	Roche stérile Roche réservoir Roche réservoir	à Faible contenu en M.O.
<u>VERHELHA</u>	AAE	1876-2064	C1	Roche réservoir	à Roche mère interne
MAVUNA	AAE	2064-2115	C1	Roche réservoir	à Roche mère interne
<u>CHELA</u>	AAE	2660-2704	B2	Roche mère potentielle	à Transfert interne
<u>BUCONAZI</u> faciès <u>TOCA</u>	AAE AAA	2704-2722 1878-1896	D2 D2	Roche stérile Roche stérile	
<u>BUCOMAZI</u> faciès <u>ORGANIC ZONE</u>	AAE AAF AAO	2722-2789 2813-3252 3205-3576	A1 A2 A2	Roche mère active	Expulsion forte Expulsion moyenne Expulsion moyenne
, <u>BUCOMAZI</u>	AAG AAG AAG	1870-2040 - 2150-2268 2268-2344	A1 A1 A1	Roche mère active	Expulsion forte Expulsion forte Expulsion forte
GRESEUX	AAA AAA AAA	1896-2075 2840-2946 3020-3092	A1 A1 A1	Roche mère active	Expulsion forte Expulsion forte Expulsion forte

Tabl. V.3.2. Classification des formations du secteur Bas Zaire - Angola d'après leurs caractéristiques de roches mères ou de roches réservoirs (organigramme au tabl.V.3.1 et données à l'annexe V.3.6).

CARACTERISATION DES FORMATIONS DE ROCHES MERES DU BAS ZAIRE - ANGOLA

FORMATION			INDICE	3	TAUX de PRODUCTION	TAUX d'EXPULSION
SONDAGE / PROFONDEUR (=)	SYMBOLE	11.	IX.	IPE.	\$2pr / \$20 (\$)	S2 _{EMP} / S2 _{Pr} (2)
Black Shales			,			
AAA 1708-1750 AAP 592-1234	A	2.45	1.60	0.14 0.06	14.68 11.02	0
AAE 558-1190	Ē	2.13	0.91	0.07	7.87	0.75
<u>Liawenda</u>						
AAE 1190-1311	*	2.75	2.10	0.32	32.00	70.83
<u>Kinkasi</u>			1			
AAE 1311-1876	¥	2.92	2.18	0.21	29.00	44.83
<u>Bucomazi Organic Zone</u>						
AAE 2722-2789	•	1.18	2.44	0.36	37.77	76.01
AAF 2813-3252		1.56	2.47	0.33	36.00	39.85
AAU 3205-3576		1.79	2.99	0.5/	00.89	43.30
<u>Bucomazi gréseux</u>				:		
AAG 1870-2040		2.42	2.40	0.29	32.11	67.14
AAG 2150-2268		2.30	2.63	0.41	38.87	79.03
AAG 2258-2344		1.71	2.14	U.28	51.61	68./5
AAA 1896-2075	Ŧ	2.00	2.48	0.20	24.75	69.71
AAA 2840-2075	D	2.15	3.05	0.17	44.23	55.07
AAA 3020-3092		1.10	3.20	0.26	65.90	99.92

Tabl. V.3.3. - Caractéristiques géochimiques moyennes des formations de roches mères du Bas Zaire - Angola. Indices moyens de Type *II*, de Maturité *IN* et de Production Estimée *IPE*. Taux de Production du pétrole par le kérogène et Taux d'Expulsion du pétrole par la roche mère.

DIAGRAMME TAUX D'EXPULSION - TAUX DE PRODUCTION

Fig. V.3.4 - Caractérisation des formations de roches mères du Bas Zaïre - Angola dans un diagramme *Taux d'Expulsion - Taux de Production*. (valeurs et symboles: tabl.V.3.3).

CORRELATIONS KEROGENE -BITUME

CORRELATION	COLONNE A	COLONNE B	A+B	INDICE ID
0680 - 0680	348	36	384	3
1928 - 1928	1648	529	2177	7
2022 - 2022	16	4	20	1
2736 - 2736	1057	121	1178	5
2770 - 2770	1328	289	1617	6
0680 - 1272	849	3481	4330	9
0680 - 1928	447	3249	3696	8
0680 - 2022	966	3481	4447	9
0680 - 2674	93	841	934	4
0680 - 2736	486	729	1215	5
0680 - 2770	296	2025	2318	7
1928 - 0680	675	1600	2275	7
1928 - 1272	358	625	983	4
1928 - 2022	294	625	919	4
1928 - 2674	946	25	971	5
1928 - 2736	1347	49	1396	5
1928 - 2770	1116	121	1237	5
2022 - 0680	940	3969	4909	9
2022 - 1272	665	4	669	4
2022 - 1928	1432	0	1432	5
2022 - 2674	1100	784	1884	6
2022 - 2736	1124	900	2024	7
2022 - 2770	1084	144	1228	5
2736 - 0680	590	484	1074	5
2736 - 1272	573	1849	2422	7
2734 - 1928	1873	1681	3554	8
2736 - 2022	61	1849	1910	6
2736 - 2674	583	169	752	4
2736 - 2770	901	841	1742	6
2770 - 0680	582	1156	1738	6
2770 - 1272	200	961	1161	5
2770 - 1928	1661	841	2502	7
2770 - 2022	184	961	1145	5
2770 - 2674	726	1	727	4
2770 - 2736	1068	1	1069	5

0680 - 1272	1017	4225	5242	10
0680 - 1928	948	3969	4917	9
0680 - 2022	1086	4225	5311	10
0680 - 2674	281	1225	1506	6
0680 - 2736	653	1089	1742	6
0680 - 2770	825	2601	3426	8
1272 - 1928	1192	4	1196	5
1272 - 2022	19	0	19	1
1272 - 2674	999	900	1899	6
1272 - 2736	1011	1024	2035	7
1272 - 2770	916	196	1112	5
1928 - 2022	1488	4	1492	

Tabl. V.4.1 - Corrélations bitume-bitume et kérogène-kérogène basées sur les données de pyro-chromatographie des fractions S2' des résines & asphaltènes et S2 des roches à kérogène extraites (échantillon AAE 1928, AAE 2022, AAE 2624, AAE 2736, AAE 2770 et ALA 1272 du Bas Zaïre). *Colonne A*: moyenne des carrés des écarts (x 10⁴) entre les six rapports ipCs/nCs de l'annexe V.5a & c. *Colonne B*: carré de l'écart (x 10⁴) entre les rapports [Pristème-(1+2) / nC178] de l'annexe V.5a & c. L'Indice de Différence ID est déterminé d'après les données suivantes:

A + B	Indice	ID	A + B Indice	ID	<u>A + B</u>	Indice ID
0	>	0	501 - 1000>	4	3001 - 400	0> 8
1 -	100>	1	1001 - 1500>	5	4001 - 500	0> 9
101 -	250>	2	1501 - 2000>	6	> 5000	> 10
251 -	500>	3	2001 - 3000>	7		

CORRELATIONS BITUME - BITUME

COLONNE B

A+B

INDICE ID

COLONNE A

CORRELATION

1928 - 2674

1928 - 2736

1928 - 2770

2022 - 2674

2022 - 2736

2022 - 2770

2674 - 2736

2674 - 2770

2736 - 2770

CORRELATIONS PAR L'INDICE DE DIFFERENCE ID

CORRELATION INDICE ID 1272 - 2022 1 2674 - 2736 3 1928 - 2770 3 2674 - 2770 4 2736 - 2770 4 1272 - 2770 5 1928 - 2674 5 1272 - 1928 5 1928 - 2674 5 1272 - 1928 5 1928 - 2674 5 1272 - 1928 5 1928 - 2736 5 5 2022 - 2770 5 1928 - 2022 5 0680 - 2674 6 6 2022 - 2736 6 6 2022 - 2736 6 2022 - 2736 7 2022 - 2674 7 0680 - 2770 8 0680 - 2770 8 9 0680 - 1928 9 0680 - 1272 10 0680 - 2022 10 10 10 10 10 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

CORRELATION K	EROGENE - BITUME
CORRELATION	INDICE ID
2022 - 2022	1
0680 - 0680	3
2022 - 1272	4
2770 - 2674	4
2736 ~ 2674	4
1928 - 2022	4
0680 - 2674	4
1928 - 2674	4
1928 - 1272	4
2770 - 2736	5
2736 - 0680	5
2770 - 2022	5
2770 - 1272	5
<u> 2736 - 2736</u>	<u>5</u>
0680 - 2736	5
2022 - 2770	5
1928 - 2770	5
1928 - 2736	5
2022 - 1928	5
<u> 2770 - 2770</u>	<u>6</u>
<u> 1928 - 1928</u>	<u>7</u>
2736 - 1928	8
0680 - 1928	8
0680 - 1272	9
0680 - 2022	9
2022 - 0680	9

1

Fig. V.4.2 - Classement des relations entre les échantillons d'après l'Indice de Différence *ID*, pour les corrélations bitume-bitume et kérogène-bitume, dans les sondages AAE et ALA.

- 118 -

FIGURES & TABLEAUX

CHAPITRE VI

FIGURES & TABLEAUX du CHAPITRE VI

Figures	<u>&</u>	Tableaux	du	§ VI.2	•	¢	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	<u>120</u>
Figures	&	Tableaux	du	§ VI.3	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	<u>123</u>
Figures	å	Tableaux	du	<u>§ VI.4</u>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	<u>129</u>

-+000+-

.

SONDAGE AAB: INDICES ET COURBE DE PRODUCTION ESTIMEE

Fig. VI.2.1 - Evolution de l'Indice de Production Estimée *IPE* en fonction de la profondeur, dans le sondage AAB (série Miocène d'Angola, matière organique de type IIb d'origine mixte marine-terrestre). Ajustement d'une Courbe de Production Estimée aux valeurs de l'indice *IPE* et extrapolation de cette courbe jusque IPE=1.

a. Modèle géologique

b. Modèle expérimental

Fig. VI.2.2 - Modèles cinétiques pour la série Miocène du sondage AAB: courbes de réaction différentielles et cumulées (paramètres: tabl.VI.2.1).

... : Courbes de Production Estimée ____: Courbes de production théorique simulées.

a: Modèle cinétique basé sur les données géologiques: la courbe de réaction globale est composée de 3 réactions partielles de faible énergie.

b: Modèle cinétique basé sur les données de pyrolyse: la courbe de réaction globale est composée de 14 réacions partielles présentant une large gamme d'énergies d'activation et de facteurs de fréquence.

MODELE			TMax			
	n°	E(Kcal)	n	Log A	Distribution (%)	(3°)
Géologique	1 2 3	5.0 5.0 23.87	1.0 1.0 1.47	-7.2 -8.555 0.939	14 8 78	28 46 103
Expérimental	1 2 3 4 5 6 7 8 9 10 11 12 13 14	22.25 27.25 31.48 32.57 34.28 37.45 37.89 40.91 43.18 46.08 49.21 50.07 51.46 53.73	1.04 0.95 1.21 1.11 1.45 1.29 1.16 1.30 1.40 1.42 1.57 1.36 1.47	7.0 8.77 9.56 10.01 10.45 11.10 11.22 12.45 12.04 13.40 14.22 14.07 14.76 15.32	6 9 4 1 1 2 4 9 26 31 4 1 1 1	25 28 40 49 58 70 76 88 100 112 124 130 136 142

MODELES CINETIQUES DU SONDAGE AAB

Tabl. VI.2.1 - Paramètres cinétiques des réactions partielles des modèles cinétiques de la genèse du pétrole dans le sondage AAB.

MODELES CINETIQUES EXPERIMENTAUX

Fig. VI.3.1 - Modèles cinétiques expérimentaux de la dégradation thermique des roches à kérogène et des résines & aphaltènes de type I à IIa (gradient thermique de 2.20°C/Ma; paramètres: annexes VI.1).
a: Modèles cinétiques pour les roches à kérogène.
b: Modèles cinétiques pour les résines & asphaltènes.

...... : Courbes théoriques des réactions partielles et globales.

a. Roches à kérogène

Fig.VI.3.1 (suite) - Modèles cinétiques expérimentaux de la dégradation thermique des roches à kérogène et des résines & aphaltènes de type IIb à III (gradient thermique de 2.20°C/Ma; paramètres cinétiques: annexes VI.1).

a: Modèles cinétiques pour les roches à kérogène.

b: Modèles cinétiques pour les résines & asphaltènes.

...... : Courbes théoriques des réactions partielles et globales.

.... : Pour le type IIb uniquement: courbe théorique du modèle géologique.

b. Résines & Asphaltenes

MODELES CINETIQUES EXPERIMENTAUX: COMPARAISONS (suite)

a. Courbes différentielles

Type IIb

Fig.VI.3.2 (suite) - Comparaison entre les courbes de réaction théoriques des roches à kérogène et des résines & asphaltènes, pour les modèles cinétiques expérimentaux.
a: Courbes différentielles.
b: Courbes cumulées (intégrales).
courbes des roches à kérogène.

COURBES CUMULEES DES MODELES CINETIQUES EXPERIMENTAUX

Fig.VI.3.3 - Courbes de réaction cumulées théoriques des modèles cinétiques expérimentaux des roches à kérogène de type Ib à III: Comparaison (la courbe du type Ia est omise car elle ne paraît pas réaliste).

MODELE CINETIQUE	ROCHE à KE	ROGENE	RESINES & ASPHALTENES							
Type de Matière Organique	Dispersion des TMax réactions partielles (°C)	TMax réaction globale (°C)	Dispersion des TMax réactions partielles (°C)	TMax réaction globale (°C)						
Ia	64 - 94	85	121 - 147	145						
Ib	124 - 196	154	127 - 151	125						
IIa	25 - 172	136	31 - 118							
IIb	25 - 142	103	67 - 121	112						
III	28 - 244	100	61 - 82	82						

TEMPERATURES TMax DES MODELES CINETIQUES

Tabl. VI.3.1 — Températures *IMax* au sommet des courbes de réaction différentielles simulées avec le gradient thermique du sondage AAB (2.20°C/Ma), pour les modèles cinétiques des roches à kérogène et des résines & asphaltènes. (Paramètres cinétiques des modèles: annexe VI.1.).
COURBES DE PRODUCTION ESTIMEE DES SONDAGES AAE, AAF ET AAO

Fig. VI.4.1 - Courbes de production estimée ajustées aux indices IPE des échantillons de roche à kérogène des sondages AAE, AAF et AAO. L'histoire thermique des sédiments est relativement similaire pour ces trois sondages et elle est considérée comme étant caractérisée par une température de surface de 25°C, par un gradient géothermique de 25.84°C/km et par un taux d'enfouissement de 19.94 m/Ma.

DIAGRAMME D'ISO-PRODUCTION

Fig. VI.4.2 - Diagrammes comparatifs des lignes d'iso-production déduites des courbes de production estimée, pour les types de matière organique I, IIa et IIb. De 3600 à 5000 m, les données sont interpolées (le socle est atteint à ± 3700 m dans le sondage AAO).

a. Modèle pour les roches à kérogène de type Ib

c. Modèle pour les roches à kérogène de type IIb

Fig. VI.4.3 - Ajustement des courbes théoriques de production aux courbes de Production Estimée des modèles des roches à kérogène de type I, IIa et IIb dans les sondages AAE, AAF et AAO. Les courbes théoriques ont été simulées à partir des paramètres des modèles cinétiques géologiques (tabl.VI.4.1) et avec l'histoire thermique correspondante (I° surface: 25°C, gradient géothermique: 25.84°C/km et taux d'enfouissement: 19.94 m/Na).

MODELES CINETIQUES DES SONDAGES AAE, AAF et AAO

TYPE de M.O.	REACTION n°	PARAMETRES CINETIQUES					ECARIS e (Braun & Burnham)	
		E (kcal)	n	Log A (s ⁻¹)	Proportion (%)	TMax (°C)	Courbe Différentielle	Courbe Cumulée
	1 2	7.61 52.41	1.00 0.80	- 7.795 16.871	32 68	74 120	0.24	2.56
	1 2 3	3.86 22.42 18.59	1.00 1.00 0.59	- 9.836 1.115 - 1.542	15 20 65	35 84 125	0.03	0.85
IID	1 2	10.00 19.20	1.00 0.40	- 6.359 - 1.343	38 62	79 146	0.14	1.64

Tabl. VI.4.1 - Paramètres des modèles cinétiques géologiques des sondages AAE, AAF et AAO, pour les roches à kérogène de type I, IIa et IIb. Ecarts e entre les courbes de Production Estimée et les courbes de production théoriques simulées à l'aide des paramètres des modèles cinétiques.

TAUX d'EXPULSION - INDICE DE MATURITE IM

TAUX de	INDICE de MATURITE IM						
(%)	Type Ib	Type IIa	Type IIb				
0 5 10 15 22 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 99	$\begin{array}{c} 0.0\\ 0.6\\ 0.7\\ 1.0\\ 1.2\\ \underline{1.5}\\ 1.7\\ 2.1\\ 2.3\\ \underline{2.5}\\ 2.6\\ 2.7\\ 2.8\\ 2.9\\ 3.1\\ 3.3\\ \underline{3.5}\\ 3.7\\ 3.9\\ 4.3\\ 4.6\end{array}$	$\begin{array}{c} 0.0\\ 0.6\\ 0.7\\ 0.9\\ 1.1\\ 1.2\\ 1.3\\ \underline{1.6}\\ 1.8\\ 2.2\\ \underline{2.5}\\ 2.6\\ 2.8\\ 2.9\\ 3.0\\ 3.2\\ 3.3\\ \underline{3.5}\\ 3.7\\ 3.9\\ 4.3 \end{array}$	$\begin{array}{c} 0.0\\ 1.0\\ 1.3\\ \underline{1.5}\\ 1.7\\ 2.1\\ 2.3\\ \underline{2.5}\\ 2.6\\ 2.75\\ 2.9\\ 3.0\\ 3.1\\ 3.2\\ 3.3\\ \underline{3.4}\\ 3.7\\ 4.3 \end{array}$				

Tabl.VI.4.2 - Correspondance entre les valeurs de l'Indice de Maturité *IN* et le Taux de Production théorique, pour les roches à kérogène de type Ib, IIa et IIb du Bas Zaïre et d'angola (lignées évolutives des kérogènes de type I, IIa et IIb sur le diagramme *IH-TMax*).

MODELISATION DE LA GENESE DU PETROLE DANS LES SEDIMENTS

Roches à kérogène de type I

Fig. VI.4.4a - Coupes E-W dans le secteur Bas Zaïre - Angola montrant les lignes d'iso-pourcentages du Taux de Production Théorique, simulé pour les roches à kérogène de *type I* et avec l'histoire thermique des différents sondages mentionnés (le Loême salifère est indiqué en noir).

- 133 -

MODELISATION DE LA GENESE DU PETROLE DANS LES SEDIMENTS Roches à kérogène de type IIa

Fig. VI.4.4b - Coupes E-W dans le secteur Bas Zaïre - Angola montrant les lignes d'iso-pourcentages du Taux de Production Théorique, simulé pour les roches à kérogène de *type IIa* et avec l'histoire thermique des différents sondages mentionnés (le Loême salifère est indiqué en noir).

MODELISATION DE LA GENESE DU PETROLE DANS LES SEDIMENTS

Roches à kérogène de type IIb

Fig. VI.4.4c - Coupes E-W dans le secteur Bas Zaïre - Angola montrant les lignes d'iso-pourcentages du Taux de Production Théorique, simulé pour les roches à kérogène de *type IIb* et avec l'histoire thermique des différents sondages mentionnés (le Loême salifère est indiqué en noir).