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e failures were reported in a 500 km2 study area in the Geba–Werei catchment,
northern Ethiopia, a region where landslides were not considered an important hazard before. Field
observations, however, revealed that many of the failures were actually reactivations of old deep-seated
landslides after land use changes. Therefore, this study was conducted (1) to explore the importance of
environmental factors controlling landslide occurrence and (2) to estimate future landslide susceptibility. A
landslide inventory map of the study area derived from aerial photograph interpretation and field checks
shows the location of 57 landslides and six zones with multiple landslides, mainly complex slides and debris
flows. In total 14.8% of the area is affected by an old landslide. For the landslide susceptibility modelling,
weights of evidence (WofE), was applied and five different models were produced. After comparison of the
models and spatial validation using Receiver Operating Characteristic curves and Kappa values, a model
combining data on elevation, hillslope gradient, aspect, geology and distance to faults was selected. This
model confirmed our hypothesis that deep-seated landslides are located on hillslopes with a moderate slope
gradient (i.e. 5°–13°). The depletion areas are expected on and along the border of plateaus where weathered
basalts rich in smectite clays are found, and the landslide debris is expected to accumulate on the Amba
Aradam sandstone and upper Antalo limestone. As future landslides are believed to occur on inherently
unstable hillslopes similar to those where deep-seated landslides occurred, the classified landslide
susceptibility map allows delineating zones where human interventions decreasing slope stability might
cause slope failures. The results obtained demonstrate that the applied methodology could be used in similar
areas where information on the location of landslides is essential for present-day hazard analysis.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Although landslides on the African continent have considerable
social and economic consequences (e.g. Ngecu and Ichang'I, 1999;
Ayonghe et al., 2004), and although they are important for the
development of hillslopes (e.g. Ayalew and Yamagishi, 2004; Knapen
et al., 2006) information on this geomorphic process is far more
restricted compared to other continents. A study on the global
occurrence of fatal landslides in 2007 by Petley (2008) reports only 13
of 395 fatal landslides to have occurred in Africa, but the low number
is followed by a comment suggesting that a number of fatal landslide
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events might be missed, especially when they occurred in remote
places or where they are reported in a local language. This comment
suggests that also a review by Alcántara-Ayala (2002) probably
underestimates the number of landslide events on the African
continent.

Aware of the lack of information on landslides in Africa, several
studies have tried to catch upwith the rest of theworld during the last
decades (e.g. Temple and Rapp, 1972; Moeyersons, 1981, 1989, 2001,
2003; Garland and Olivier, 1993; Davies, 1996; Ayonghe et al., 1999,
2004; Ngecu and Ichang'I, 1999; Ngecu and Mathu, 1999; Bell and
Maud, 2000; Ibe and Ebe, 2000; Temesgen et al., 2001; Nyssen et al.,
2003; Moeyersons et al., 2004, 2008; Ngecu et al., 2004; Knapen et al.,
2006; Claessens et al., 2007; Zogning et al., 2007). With the exception
of the paper by Claessens et al. (2007) all these studies present case-
studies of fatal and destructive landslides, descriptive analyses of the
causal factors and consequences, or statistical analyses of rainfall
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events that triggered landslides. These studies often have a high local
importance, as they contribute to better understanding of the site-
specific problems. On a larger scale however these studies have only
limited value.

Claessens et al. (2007) presented a physical deterministic slope
stability model, tested in a Ugandan study area, for assessment of
landslide susceptibility. Landslide susceptibility maps portray the
propensity of a site to generate landslides (Guzzetti et al., 2006).
Regional-scale susceptibility maps can be created with a variety of
methods. Carrara et al. (1995), Soeters and van Westen (1996),
Guzzetti et al. (1999) and others provide clear syntheses, and
distinguish among geomorphological, heuristic, statistical and physi-
cally-based models. In regions with limited data-availability, spatially
distributed physically-based or deterministic models generating
objective, site-specific factors of safety (e.g. Frattini et al., 2004),
failure probabilities (e.g. van Westen et al., 1993) or critical rainfall
(e.g. Claessens et al., 2007) have two important limitations. They
require detailed geotechnical data, which is often absent or only
available for point locations, and the most commonly used models
(e.g. infinite slope model) are too simplistic for most landslide types
(Guzzetti et al., 1999). The lack of detailed geotechnical data might be
a reason why Temesgen et al. (2001) adopted a heuristic or expert-
based approach in which weights, attributed to classes of different
environmental factors, were added to obtain a landslide susceptibility
map for a study area in the eastern margin of the Main Ethiopian rift.

The objective of this study is to present a landslide susceptibility
model (1) that helps in understanding the spatial distribution of
landslides, (2) that is objective and can be validated, (3) that combines
weights attributed to the classes of environmental factors, and (4) that
allows regional analyses in remote areas where detailed large-scale
data is not available. More specifically, the statistical model, weights of
evidence (WofE), will be used to estimate landslide susceptibility and
to explore the influence of environmental characteristics on slope
failure. Similar to all other statistical models, WofE require a detailed
landslide inventory, because the approach is based on the assumption
that future landslides will occur under the same conditions and on
sites with similar characteristics as currently affected landslide sites. A
detailed inventory of old, deep-seated landslides, created for a
representative 500 km2 study area in the Ethiopian highlands, will
be used to meet the objectives. Hence, we will show that WofE not
only allows assessing the susceptibility to more recent shallow
landslides, but that it also helps in understanding the spatial
distribution of these deep-seated landslides.

2. Study area

This study focuses on landslide susceptibility in the northern
Ethiopian highlands (Fig. 1). More specifically, a 500 km2 study area
around Hagere Selam (Dogu'a Tembien district, Tigray) was selected.
This area, located in the Geba and Werei river catchments, was
selected because of the outcrop of a complete geological succession
representative for the region and because of the availability of
background data as several studies on soil erosion processes and soil
conservation have been carried out there (e.g. Nyssen et al., 2000;
Gebremichael et al., 2005; Descheemaeker et al., 2006).

The study area covers the north-western part of the Mekelle
outlier, which is composed of a nearly horizontal succession of
Mesozoic layers consisting of a lower sandstone unit, the Adigrat
sandstone, an intermediate large carbonate unit, the Antalo limestone
and Agula shale, and an upper sandstone unit, the Amba Aradam
Formation (Bosellini et al., 1997; Fig. 2). Two layers of flood basalts of
Tertiary age, intercalated with silicified lacustrine deposits (i.e. white
silicified clays and marls with abundant cherts; Bosellini et al., 1997;
Asrat, 2002), unconformably overlie the Amba Aradam Formation. As
a result of contact metamorphism, the top of the Amba Aradam
sandstone is resistant and impervious. A network of Mekelle dolerite
sills and dykes (Dramis et al., 2002) developed more or less
contemporaneously with the plateau basalts. The Imba Degoa Ridge
(Figs.1 and 2) is, for example, a feeder dyke of theMekelle dolerite sill.

The present-day, structural landscape of tabular, stepped land-
forms is related to differential erosion of the outcropping monoclinal
lithological layers (Nyssen et al., 2004). Harder layers such as the
Amba Aradam sandstone and some local banks in the Antalo
limestone form clear structural levels (e.g. Fig. 3). Erosion was
enhanced by up to 2000 m Miocene and Plio-Pleistocene tectonic
uplifts that were related to the Ethiopian rift (Almond, 1986; Bosellini
et al., 1997), located ca. 100 km east of the study area. Several faults
cross the study area. SE–NW oriented faults are dominant.

The altitude of the studyarea ranges between1370and2835ma.s.l.
with a dominance of areas with an altitude between 2000 and
2500ma.s.l (Fig.1). Slope gradients up to 35° andmore can be found in
the studyarea, but ca. 70% of the hillslope sections have slope gradients
below 15°. The region has an average annual rainfall depth of 750 mm
showing a bimodal distribution with a first minor peak from March
to May and a second main peak (i.e. 80% of the annual rainfall) from
June to September (Nyssen et al., 2005). Daily air temperature is
characterised by large variations (e.g. from 5 °C to 28 °C; Nyssen et al.,
2005), but temperatures below 0 °Cwere nevermeasured over the last
decades.

With regard to the soilscape, Vertisols and vertic Cambisols often
rich in smectite clays are found in the basalts above the Amba Aradam
sandstone. Lower tracts of the valleys on Antalo limestone have
Calcisols, other calcaric soils and some Vertisols (Nyssen et al., 2008).
Over the last 3000 years large-scale human-induced land use changes
from forest to croplands have taken place (Nyssen et al., 2004),
causing important water and tillage erosion. In order to reduce soil
erosion rates, an active policy of reforestation of the steepest slopes
has taken place since 1980s. Nyssen et al. (2003) suggested that
increased infiltration on these reforested hillslopes (i.e. exclosures)
might locally decrease slope stability.

3. Materials and methods

3.1. Landslide inventory

The presence of landslides in the study area became only clear
during the last decade, after reactivation of some old landslides during
construction works, such as roadworks east of Hagere Selam, and
installation of electricity poles. For the study area, a landslide
inventory map was prepared from 1:50,000 aerial photograph
interpretation in combination with detailed field checks conducted
by four geomorphologists in April and May 2007 (Moeyersons et al.,
2008). The landslides were mapped on a digital topographical map,
and the landslide depletion (i.e. upper part of landslides with concave
plan and profile curvature) and accumulation (i.e. lower part of
landslides with convex plan and profile curvature) areas weremapped
separately.

During field control, landslides were classified using the classifica-
tion suggested by Cruden and Varnes (1996). The resulting inventory
map (Fig. 1) shows the location of 57 old deep-seated mass
movements, mainly complex and rotational slides and debris flows
(Fig. 3A–E), and six zones with multiple mass movements. In these six
large zones, geomorphic evidence of the presence of several landslides
was found, but due to soil erosion and anthropogenic impact on local
topography the delineation of all individual landslides was impossible.
In total the number of landslides in the 500 km2 study area is
estimated to be at least 100. Together they cover ca. 14.8% of the study
area. Some of these landslides are probably very old. Nyssen et al.
(2003) assumes they initiated during the Late Pleistocene to Middle
Holocene. However, we distinguished different categories of freshness
of the typical morphological landslide characteristics (e.g. main scarp,
reverse slope, and foot) and different stages in the evolution of the



Fig.1. Topographic contour linemap of the 500 km2 study area around Hagere Selam in Tigray, northern Ethiopia, and location of large landslides (57 complex slides and debris flows) and six zones with multiple landslides. A–E indicate location
of landslides shown in Fig. 3.
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Fig. 2. Geological map of the study area (after Russo et al., 1999) with overlay of landslide depletion and landslide accumulation areas.
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Fig. 3. Typical landslides in the study area: (A) large debris flow which initiated at the plateau border in weathered basalts and lacustrine intercalations and flowed over the Amba
Aradamsandstone cliff and twounderlyingAntalo limestone cliffs. Note the concavedepletion area, and the toppled rocks in front of the cliffs; (B) side viewof debris flowshown in (A).
Again the concave depletion area is clearly visible; (C) debris flow located east of the flow shown in (A). Note the settlement located in the depletion area; (D) debris flow has cut
through the Amba Aradam sandstone cliff. Red arrows indicate tilted sandstone blocks that were dragged downslope by the debris. Yellow arrow indicates more recent rock fall (not
included in this study); (E) rotational slide. Red arrow indicates reverse slope consisting of large blocks of AmbaAradamsandstone; (F) recent translational debris slides. Such relatively
small slides were not included in this analysis (see Fig. 1 for location of landslides).
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internal drainage pattern after landslide initiation. Both the observa-
tion of different phases in freshness of landslide characteristics and in
internal drainage pattern (Keaton and DeGraff, 1996) indicate that
landslides were initiated or reactivated during different periods in the
past. Compared to Fig. 3D, C for example shows a rotational landslide
with a fresher morphology. On both figures one can distinguish a clear
reverse slope downslope of the main scarp, but from the landslide on
Fig. 3D more hillslope material has been removed by subsequent soil
erosion by water. In the field, also several small, more recent shallow
debris flows and translational slides were observed (Fig. 3F). Their
location was indicated on the 1:50,000 topographical map, but they
were not included in this analysis, because it is not appropriate to



Table 1
Classification of independent variables using a priori information on landslide locations
to maximize contrast values, and results of WofE modelling for deep-seated landslides
(see Fig. 2 for details on lithological formations)

% landslides % study area W+ W− C StudC

Altitude (m a.s.l.)
[1650–2294) 10.63 49.80 0.00 0.58 −0.58 −3.61⁎⁎
[2294–2388) 21.67 17.27 0.23 −0.05 0.28 2.13⁎⁎
[2388–466) 31.76 11.74 1.00 −0.26 1.25 9.53⁎⁎
[2466–2559) 20.32 9.22 0.79 −0.13 0.92 6.42⁎⁎
[2559–2850] 15.61 11.96 0.27 −0.04 0.31 2.10⁎⁎

Slope (°)
[0–5.2) 17.09 24.97 0.00 0.10 −0.10 −0.72
[5.2–8.4) 27.05 21.68 0.22 −0.07 0.29 2.35⁎⁎
[8.4–12.9) 28.40 21.28 0.29 −0.09 0.38 3.10⁎⁎
[12.9–20) 17.90 19.10 −0.06 0.01 −0.08 −0.58
[N20] 9.56 12.97 −0.31 0.04 −0.34 −2.05⁎⁎

Aspect
N 15.38 13.33 0.00 −0.02 0.02 0.17
NE 14.19 16.33 −0.14 0.03 −0.17 −1.13
E 10.34 12.61 −0.20 0.03 −0.22 −1.37⁎
SE 12.86 11.62 0.10 −0.01 0.12 0.75
S 16.18 13.41 0.19 −0.03 0.22 1.54⁎
SW 11.01 11.46 −0.04 0.01 −0.05 −0.28
W 9.42 10.22 −0.08 0.01 −0.09 −0.54
NW 10.61 11.02 −0.04 0.00 −0.04 −0.26

Profile curvature
Convex 38.59 37.45 0.00 −0.02 0.02 0.16
Flat 23.34 22.99 0.02 0.00 0.02 0.16
Concave 38.06 39.56 −0.04 0.02 −0.06 −0.55

Plan curvature
Convex 46.02 45.31 0.00 −0.01 0.01 0.12
Flat 13.40 13.25 0.01 0.00 0.01 0.09
Concave 40.58 41.44 −0.02 0.01 −0.04 −0.31

Geology
MD 0.00 0.22 0.00 0.00 0.00 −0.06
TB 5.84 6.83 −0.16 0.01 −0.17 −0.83
AA 25.86 13.67 0.64 −0.15 0.79 6.07⁎⁎
AS 4.51 3.77 0.18 −0.01 0.19 0.82
Jd 33.02 16.95 0.67 −0.22 0.88 7.17⁎⁎
Jtc 9.68 12.67 −0.27 0.03 −0.30 −1.82⁎⁎
Jtb 17.11 20.80 −0.20 0.05 −0.24 −1.75⁎⁎
Jta 2.79 6.13 −0.79 0.04 −0.82 −3.10⁎⁎
Rest 1.19 18.96 −2.77 0.20 −2.96 −7.89⁎⁎

Distance to faults (m)
[0–330) 26.24 30.30 0.00 0.06 −0.06 −0.46
[330–710) 24.09 21.04 0.14 −0.04 0.17 1.37⁎
[710–1130) 22.88 15.61 0.38 −0.09 0.47 3.59⁎⁎
[1130–1730) 15.48 13.25 0.16 −0.03 0.18 1.25
[N1730] 11.31 19.80 −0.56 0.10 −0.66 −4.22⁎⁎

Distance to downslope river (m)
[0–98) 25.30 30.58 0.00 0.07 −0.07 −0.59
[98–214) 29.21 29.26 0.00 0.00 0.00 −0.02
[214–357) 25.03 22.89 0.09 −0.03 0.12 0.94
[N357] 20.46 17.27 0.17 −0.04 0.21 1.56⁎

Positive (W+) and negative (W−) weights, contrasts (C) and studentized contrasts
(StudC) are obtained from a representative sample of 4990 grid cells throughout the
study area. Asterisks indicate significance level (⁎⁎α=0.05; ⁎ α=0.10).
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establish onemodel for different landslide types. Also rock falls are not
included in this analysis, because these are very different slope
processes. Cliff recession through rock fall was studied by Nyssen et al.
(2006) who measured for a 1500 m long section of the Amba Aradam
cliff an average annual recession of 0.37 mm. With ca. 357 km of rock
cliffs higher than 10 m in the study area, the annual rock fall volume is
thus estimated to be at least 1320 m3. More information on the
landslidemapping and classification can be found inMoeyersons et al.
(2008).

Finally, the study area consists of 88,053 grid cells (30 m×30 m)
located within a large landslide. These landslide-affected grid cells
were given a value of one while a zero value was given to 505,947 grid
cells located outside a landslide.

3.2. Weights of evidence and evaluation and validation of calibrated
models

When sufficient data are available the relative importance of a set
of controlling factors can be estimated statistically using weights of
evidence modelling (WofE). This Bayesian approach in a log-linear
form, and implemented in a GIS framework, has proven valuable for
landslide susceptibility mapping in previous studies (e.g. Lee et al.,
2002; van Westen et al., 2003; Thiery et al., 2004; Neuhäuser and
Terhorst, 2007; Poli and Sterlacchini, 2007; Sharma and Kumar, 2007;
Mathew et al., 2007; Dahal et al., in press).

A detailed description of the mathematical formulation of the
WofE method is given in e.g. Bonham-Carter et al. (1989) and
Agterberg et al. (1990), and more recently in e.g. Lee et al. (2002), van
Westen et al. (2003) and Dahal et al. (in press). In short, for each
category of a categorical or a classified continuous variable (X1, …, Xk)
a positive (W+) and negative (W−) weight are calculated based on the
presence or absence of the landslides within the area. Provided that
the controlling factors used as variables are conditionally indepen-
dent, the posterior probability or landslide susceptibility can be
estimated from these weights and the prior probability.

For derivation in a raster GIS, IDRISI Andes and using grid cells with
a 30 m×30 m resolution, positive (W+) and negative (W−) weights can
be calculated as:

W+
i = loge

N LS=Xið Þ
N LSð Þ

N Xi=LSð Þ
N LSð Þ

2
664

3
775 ð1Þ

W−
i = loge

1− N LS=Xið Þ
N LSð Þ

1− N Xi=LSð Þ
N LSð Þ

2
664

3
775 ð2Þ

where: N(LS/Xi) is the number of cells in a (mapped) landslide and
with the presence of a certain category of a variable (Xi); N(LS) is the
number of cells in a (mapped) landslide; N Xi=LS

� �
is the number of

cells with the presence of a certain category of a variable (Xi) and
located outside of a (mapped) landslide and; N LS

� �
is the number of

cells outside a (mapped) landslide.
In this study not all 594,000 grid cells were used, but weights were

calibrated using a subsample of ca. 5000 grid cells (i.e. n=4990) taken
by stratified random selection. About 15.1% (i.e. n=754) of these cells
were affected by a landslide. χ2 tests proved that this sample was
representative for the total study area. A positive (negative) Wi

+

obtained for a certain category of a variablemeans that the presence of
this category in a grid cell will (not) contribute to landslide
susceptibility. Similarly, a negative (positive) Wi

− means that the
absence of the category will (not) favour slope stability (van Westen
et al., 2003). For each grid cell, the contrast C indicates how well a
category predicts landslide occurrence incorporating both weights
(Raines, 1999). C is calculated as:

C =W+
i −W−

i ð3Þ
and is a first parameter that helps in distinguishing important
variables from less important variables. C has a zero value when a
category has no statistical relationship with the occurrence of
landslides. In order to select significantly contributing variables
studentized contrasts (StudC) were calculated as the ratio of the
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contrast and the standard deviation of the contrast (Raines, 1999; Poli
and Sterlacchini, 2007). StudC is used in a similar manner to a student
t-test of significance of the contrast. A value of 1.28, corresponding to a
confidence level of 90%, was selected for StudC and represents the
minimum acceptable confidence threshold established for this study.
Fig. 4.Distribution of environmental variables for deep-seated landslides and for the study ar
Environmental variables are classified using a priori information on landslide locations to m
As weights are calculated with a log-linear formula, weights of
categories that significantly contribute to landslide occurrence can be
combined. In order to include only categories of conditionally
independent variables, a pairwise test supported by the χ2 test was
performed (Lee et al., 2002; Thiery et al., 2004).
ea as obtained from a representative sample of 4990 grid cells throughout the study area.
aximize contrast values (C), also shown in the histograms, obtained with WofE.



Table 2
Results of χ2 test for conditional independence (e.g. with α=0.05. df=degree of
freedom, 208.9=measured χ2, 26.3=theoretical χ2)

Measured χ2,
(df/theoretical χ2)

Elevation Slope
gradient

Aspect Geology Distance
to faults

Slope gradient 208.9
(16/26.3)

Aspect 115.2
(28/41.3)

147.1
(28/41.3)

Geology 4014.6
(36/51.0)

817.8
(36/51.0)

635.2
(63/82.5)

Distance to faults 344.9
(16/26.3)

107.5
(16/26.3)

181.3
(28/41.3)

802.2
(36/51.0)

Distance to rivers 477.9
(12/21.0)

111.2
(12/21.0)

24.1
(21/32.7)

432.6
(27/40.1)

45.6
(12/21.0)

Results in italic show that slope aspect and distance to rivers are not conditional
independent.
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Calibrated models were evaluated with confusion matrices,
Receiver Operating Characteristic curves (ROC curves, e.g. Begueria,
2006; Van Den Eeckhaut et al., 2006), success rate curves (e.g. Chung
and Fabbri, 2004), Cohen's Kappa values (Cohen,1960) and Prevalence
and Bias Adjusted Kappa (Byrt et al., 1993; Van Den Eeckhaut et al.,
2006) obtained for the calibration dataset of 4990 grid cells. In order to
create confusion matrices or contingence matrices (e.g. Van Den
Eeckhaut et al., 2006), grid cellswere classified into one of the response
levels (i.e. high versus low susceptibility to landslides). In this study,
grid cells with a landslide probability above and below 0.5 were
classified as cells susceptible or not susceptible to landsliding.
Confusion matrices were created by comparing the dichotomous
dependent variable (i.e. the presence or absence of a mapped
landslide) with the classified model results. These matrices contain
information on false positives (FP), false negatives (FN), true positives
(TP) and true negatives (TN), allowing calculation of sensitivity,
specificity and percentage of correctly classified observations. Sensi-
tivity is the number of correctly predicted landslide-affected grid cells
(i.e. TP) over the total number of mapped landslide-affected grid cells
(i.e. TP+FN), and specificity is the number of correctly predicted
landslide free grid cells (i.e. without a mapped landslide; TN) over the
total number of mapped landslide free grid cells (i.e. FP+TN) (Lasko
et al., 2005). A ROC curve then plots sensitivity versus 1-specificity as
the cut-off value varies from0 to 1. Amodelwith a perfect accuracy has
a ROC curve running vertically from [0,0] to [0,1] and then horizontally
to [1,1], whereas the curve of a model performing no better than
randomguessing runs diagonally from [0,0] to [1,1] (Lasko et al., 2005).
Although sensitive to prevalence (e.g. considerable difference between
observed positives and observed negatives; Begueria, 2006) success
rate curves (Chung and Fabbri, 2004; Guzzetti et al., 2006) were
created using the calibration dataset. A success rate curve plots the
proportion of the study area in each susceptibility class against the
proportion of landslide area in the same class. It is no prediction rate
curve (Chung and Fabbri, 2004) as for the latter the landslide data used
for the confrontation with the susceptibility map may not be used for
the model calibration. Hence, success rate curves evaluate calibrated
models, while prediction rate curves validate calibrated models.

Cohen's Kappa index (κ) is calculated as (Cohen, 1960):

κ =
Pobs−Pexp
1−Pexp

ð4Þ

where Pobs is the observed agreements; and Pexp is the expected
agreements, which are calculated as:

Pobs =
TP + TN

N
ð5Þ

and

Pexp =
TP + FNð Þ TP + FPð Þ + FP + TNð Þ FN + TNð Þ

N2 ð6Þ

where N is the total number of grid cells used in the analysis.
κ determines the agreement between two classifications and varies
from slight [b0.20), over fair [0.20–0.40), moderate [0.40–0.60),
substantial [0.60–0.80) to nearly perfect [0.80–1]. Byrt et al. (1993)
and Di Eugenio and Glass (2004) reported that κ are underestimated
when bias (e.g. considerable difference between observed and
predicted positives or observed and predicted negatives) and/or
prevalence effects are present. Therefore the Prevalence and Bias
Adjusted Kappa (PABAK; Byrt et al., 1993) was defined as:

PABAK = 2Pobs−1 ð7Þ

With regard to validation of the obtained results with data not
used for calibration of the weights and contrasts, temporal validation
of obtained landslide susceptibility models was not possible in this
study, because identified landslides could not be classified in two
groups of different ages. We applied spatial validation, and evaluated
obtained models using ROC and prediction rate curves and Kappa
values produced for (1) a validation dataset of a second stratified
random sample of ca. 5000 grid cells (i.e. 4991), and (2) all 594,000
grid cells in the study area.

3.3. Independent variables

As independent variables, topographical, lithological and hydro-
logical characteristics were selected. Topographical factors are eleva-
tion a.s.l, hillslope gradient, slope aspect, and plan and profile
curvature. All these variables were derived from SRTM (Shuttle
Radar Topography Mission; http://www2.jpl.nasa.gov/srtm/cbandda-
taproducts.html) data using standard procedures in IDRISI Andes.
Whereas the original SRTM images have a 90 m×90 m resolution, we
started from a modified, 30 m×30 m resolution image (Haregeweyn,
2006). A focal mean filter was applied to fill up grid cells where the
SRTM radar did not provide data due to shade effects (e.g. steep cliffs).
Then contour lines with a 20 m interval were created and with TIN
interpolation the 30 m×30 m resolution DEM was derived from these
contour lines. Detailed cross-checks with GPS points measured
throughout the study area and with the contour lines on the
topographical map showed that the obtained DEM could be used in
this study. As the topographical variables derived from this DEMwere
continuous, they had to be classified for the WofE analysis. In contrast
to previous studies using WofE for landslide modelling (van Westen
et al., 2003; Neuhäuser and Terhorst, 2007; Song et al., 2008; Dahal et
al., in press), we followed the advice of Bonham-Carter et al. (1989)
and classified the variables using a priori information on landslide
presence, so that C values were maximized. For the classification of
the continuous variables, we selected the grid cells located inside
landslides from the stratified random selection of 4990 grid cells used
for establishing the weights and contrasts. These 754 grid cells were
classified using natural breaks. Obtained class boundaries were then
used for classification of all 4990 grid cells, and weights were
calculated. As weights and contrasts change with the number of
categories, our method based on natural breaks was applied to
segment each continuous variable in four different classifications (i.e.
with three to six classes). For each variable the classification with the
highest contrast and significance value were selected for the
modelling. Using this approach, elevation a.s.l was subdivided in five
classes between 1650 and 2850 m (Table 1). The same number of
classes was chosen for hillslope gradient. Slope aspect was regarded as
a categorical variable distinguishing between hillslope sections with
north, northeast, east, southeast, south, southwest, west and north-
west orientations. Finally, curvature in plan and profile could be
concave, flat or convex.

http://www2.jpl.nasa.gov/srtm/cbanddataproducts.html
http://www2.jpl.nasa.gov/srtm/cbanddataproducts.html


Fig. 5. ROC curves of five landslide susceptibility models resulting from WofE analysis. Hashed lines indicate that for a probability (P) of 0.7 model (4), selected as the best model in
this study, correctly classifies 71% of the mapped landslides as landslide susceptible area (i.e. sensitivity). Approximately 25% of the areawhere no landslide is mapped is classified as
susceptible to landslides by the model (i.e. 1-specificity).

Table 3
Values of area under the ROC curve (AUC) obtained from application of the five tested
models to (i) 4990 grid cells used for calibration (i.e. derivation of weights and contrasts
shown in Table 1); (ii) 4991 grid cells used for validation; and (iii) all 594,000 grid cells
in the study area

Models Datasets

Calibration
4990 grid
cells

Validation
4991 grid
cells

Study area
594,000 grid
cells

1) Slope gradient+geology 0.719 0.717 0.708
2) Slope gradient+elevation 0.794 0.796 0.798
3) Slope gradient+elevation+geology+
distance to faults+distance to rivers

0.813 0.815 0.811

4) Slope gradient+elevation+aspect+
geology+distance to faults

0.814 0.818 0.814

5) All: Slope gradient+elevation+aspect+
profile curvature+plan curvature+geology+
distance to faults+distance to rivers

0.814 0.816 0.812

The fourth model was finally selected, as for this model (containing conditional
independent variables only) the highest AUC values were obtained.
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Data on geology and faults were derived from the 1:100,000
geological map of Mekelle outlier (Russo et al., 1999). For the study
area, this map shows 11 geological layers (Fig. 2), but for this study the
number of classes was reduced to nine by combining the three oldest
geological layers. Faults and fractures were digitized from the
geological map, and distance to faults was derived in IDRISI Andes,
and classified into five classes (Table 1) using natural breaks as
described above. Distance to rivers was derived after digitizing the
important rivers from the topographical map. The variable was
classified into four classes (Table 1).

4. Results

4.1. Univariate analysis of weights and contrasts

The resulting weights and contrasts as shown in Table 1 reflect the
importance of each category of the independent variables. ForW+ and
C, positive values contribute to landslides while negative values rather
indicate stable zones. ForW− it is the other way around. Table 1 shows
many categories with values close to 0, meaning that they hardly show
any relation with slope stability.

One or more of the categories of elevation, hillslope gradient, slope
orientation, geology and distance to faults and downslope rivers have
StudC values above 1.28 (Table 1), and hence significantly (α=0.10)
influence deep-seated slope instability. Although we observed during
the field checks that some landslide depletion areas are clearly located
in concavities (e.g. Fig. 3A,B), neither plan nor profile curvature
contributes significantly to slope instability according to the model
results (Table 1; Fig. 4D,E). Positive values of C indicate that landslides
are mainly located above ca. 2300 m a.s.l with a maximum occurrence
at altitudes between ca. 2390 and 2560 m a.s.l (Fig. 4A). In contrast to
most landslide studies, the deep-seated landslides are not expected to
be found on the steepest hillslope sections in the study area as
negative C values were found for hillslope sections above 20° (Table 1;
Fig. 4B). Sites affected by an old deep-seated landslide, typically have
slope gradients between 5° and 13°. C values for slope aspect suggest a
higher and lower spatial occurrence of landslides on south- and east-
oriented hillslopes respectively (Fig. 4C).

With regard to geology (Fig. 4F), WofE suggests that deep-seated
landslide are significantly associatedwith the presence of AmbaAradam
sandstones (AA) and upper layers of Antalo limestone (Jd). Negative C
values indicate that older geological formations are generally not
affected by landslides. Fig. 4G shows that the areal proportion of the
study area decreases with distance to faults. The proportion of areas
affected by landslide depletion zones is relatively constant for distances
ranging between 0 and 1130 m from a fault, resulting in a significant
peak in C values at distances between 710 and 1130 m from faults.
Finally, Fig. 4H shows little variation inC values of downslopedistance to



Fig. 6. Classified susceptibility map for deep-seated landslides in the study area. The map is derived with WofE using weights obtained for elevation, slope gradient, slope aspect,
geology and distance to faults (i.e. model 4).

Table 4
Five classes used for classification of the landslide susceptibility map shown in Fig. 6,
and the distribution of mapped landslides within these classes

Susceptibility Probability Landslidedepletionarea Landslide area

% Cumulative % % Cumulative %

Very high [0.85–1.00] 34.5 34.5 11.4 11.4
High [0.70–0.85) 38.5 73.0 20.9 32.3
Moderate [0.55–0.70) 17.8 90.8 19.2 51.5
Low [0.30–0.55) 7.3 98.1 22.1 73.6
Very low [0.00–0.30) 1.9 100.0 26.4 100.0
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rivers. StudC values above 1.28, however, indicate a significant presence
of landslides at distances of more than 350 m from a river.

4.2. Landslide susceptibility maps based on a combination of significant
variables

Before the weights of the significant variables can be combined for
estimating the posterior probability of landslide occurrence, condi-
tional independence was tested. χ2 analysis was used to test the
conditional independence of elevation, slope gradient, slope aspect,
geology, distance to faults and downslope distance to rivers. Pairwise
confrontation (Table 2) learned that aspect and distance to rivers were
not independent. Hence, these two variables could not be used in the
same analysis. In total, posterior probability of landslide occurrence
was estimated for five different models or combinations of variables:

1) a model based on slope gradient and geology as these are the
most important environmental causal factors in many landslide
susceptibility studies;

2) a model based on slope gradient and elevation, the two most
important topographical variables;

3) a model based on slope gradient, elevation, geology, distance to
faults and downslope distance to rivers, five conditionally
independent variables;

4) a model based on slope gradient, elevation, aspect, geology and
distance to faults, five conditionally independent variables; and

5) a model ignoring the presence of conditional independent
variables, based on all eight variables (i.e. slope gradient, elevation,
aspect, profile and plan curvature, geology, and distance to faults
and to downslope rivers).

To evaluate and compare the five models, Fig. 5 shows the ROC
curves obtained from the dataset of 4990 grid cells used for derivation
of weights and contrasts (i.e. calibration). The graph shows that the
curves of models 2 to 5 are similar, and have an area under the ROC
curve (i.e. AUC) between 0.79 and 0.82. Hence, they are capable of
predicting a considerable number of landslide-affected grid cells
without attributing a high susceptibility to large numbers of grid cells
without a mapped landslide. For a probability of 0.70, model 4 for
example correctly classifies 71% of the 754 truly affected landslide grid
cells (i.e. sensitivity or true positive rate; Fig. 5). About 25% of the 4236
grid cells outside a mapped landslide are false positives, i.e. classified
as susceptible by the model. The term misclassified is not used here,
because 1) some of these areas might have low slope stability and
could be affected by a landslide under conditions similar to those that
triggered the mapped landslides, or 2) some false positives might be
due to mapping errors at the boundaries of the old, deep-seated
landslides. For the latter we refer to Section 5 where the accuracy of
the maps used will be further discussed. The ROC curve of model 1
based on slope gradient and geology is located lower in the graph (i.e.
AUC=0.72), reflecting that this model is less capable of explaining the
occurrence of deep-seated landslides. AUC values were not only
calculated for the calibration dataset, but also for a validation dataset
of 4991 stratified randomly selected grid cells and for all 549,000 grid
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cells in the study area (Table 3). For each model, AUC values obtained
for the three different datasets are nearly equal. This means that all
fivemodels are validated successfully as they are capable of predicting
susceptibility for grid cells not used for model calibration. Finally,
model 4 was selected because this was the model with the highest
AUC values, and without dependent variables. For this model a
classified landslide susceptibility map was created (Fig. 6). Class
boundaries (Table 4) were chosen after evaluation of the ROC curve
and of the sensitivity, specificity, correctly classified grid cells and
Kappa values calculated for different probabilities (i.e. cut off values)
between 0 and 1 (Fig. 7). On the classifiedmap very high susceptibility
Fig. 7. Evolution of evaluation values for probability values ranging between 0 and 1 that
allows derivation of meaningful classes to classify the landslide susceptibility map:
(A) evolution of sensitivity, specificity and proportion of correctly classified grid cells;
(B) evolution of Cohen's Kappa and Prevalence and Bias Adjusted Kappa. The parameters
shown are obtained from application ofmodel 4 to all 594,000 grid cells in the study area.

Fig. 8. Prediction rate curve obtained from application of model 4 to all 594,000 grid
cells in the study area. Values were calculated for the probabilities (P) that were used for
classifying the landslide susceptibility map into five classes (i.e. very high, high,
moderate, low and very low). The proportion of the study area in each susceptibility
class is indicated with hashed lines in the graph.
to deep-seated landslides was attributed to grid cells with a posterior
probability above 0.85. This threshold is based on the prior probability
of landslide occurrence (i.e. 0.148; Table 4). Note that PABAK reaches a
maximum around this probability (Fig. 7B). The lower boundary of the
high susceptibility class was chosen at 0.70, where sensitivity and
specificity values cross when plotted against probability (Fig. 7A), or in
other words, at the probability threshold resulting in the best
combination of correctly classified landslide-affected grid cells and
incorrectly classified grid cells without a mapped landslide. The lower
boundary of the classes with moderate (i.e. probability=0.55) and low
(i.e. probability=0.30) susceptibility are chosen because of changes in
the gradient of the sensitivity and specificity curve in Figs. 5 and 7A.

In total, very high and high susceptibility classes cover 32% of the
study area (Table 4), more than twice the mapped affected area (i.e.
14.8%). The overlay of the mapped landslides and the classified
susceptibility map (Fig. 6) shows a rather good correspondence, and
the prediction rate curve (Fig. 8) indicates that 73% of the mapped
landslide areas are correctly classified as areas with very high or high
susceptibility. Almost 91% of themapped landslide areas are located in
areas with very high to moderate susceptibility, comprising more or
less half the study area. Hence, the model succeeds in indicating areas
where deep-seated landslides are located. Only for long-runout
landslides, a low susceptibility is sometimes attributed to the most
downslope part of the landslide foot.

5. Discussion

When evaluating the obtainedmodel results, it is important to take
into account that the accuracy of the output is strongly depending on
the quality of the input data, i.e. the landslide inventory, the SRTM
images, the 1:50,000 topographical map, the aerial photographs, and
the 1:100,000 geological map of the Mekelle outlier (Russo et al.,
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1999). In previous studies where more detailed topographical data
were not available (e.g. Neuhäuser and Terhorst, 2007), the use of
SRTM images resulted in landslide susceptibility maps of acceptable
quality. For this study, the improved 30 m×30 m resolution DEM
derived from SRTM by Haregeweyn (2006) was chosen after critical
evaluation (see Section 3.3). However, it should be taken into account
that topography is smoothed on the DEM, resulting in underestima-
tion of hillslope gradients. In contrast to LIDAR-derived topographical
maps (e.g. Schulz, 2007; Van Den Eeckhaut et al., 2007), the contour
line maps and hillshademaps derived from the 30m×30m resolution
DEM were too coarse to allow a detailed delineation of deep-seated
landslides in the study area. Therefore landslides were mapped from
aerial photos in combination with detailed field checks by four
geomorphologists experienced in landslide mapping. The experience
of geomorphologists, however, cannot avoid errors at the boundaries
of the old landslides, which over time became less clear by soil erosion
due to water and tillage and by human interventions such as
agricultural activities, and levelling for construction of roads and
houses. But the effect of incorrect delineations of landslide boundaries
will be limited in our WofE analysis, as weights and contrasts are
calculated from a confrontation of a representative sample of grid cells
located outside and inside (i.e. not at the boundaries) of mapped
landslides with classified maps of the independent variables. With
regard to the lithological map, small lithological errors (i.e. incorrect
indication of local lithology, or local errors in geometric rectification)
were detected during the field visits. Given that only local corrections
could be made, we decided to use the map published by Russo et al.
(1999). The fault map (Russo et al., 1999) shows faults and fractures
that were visible on aerial photographs. The location of mapped faults
is relatively accurate, but nothing is known about the completeness of
the map. Finally the major and moderate-sized rivers, digitized from
the topographical map, were correctly located in the valleys present
on the SRTM-derived contour line maps. Hence, the variable down-
slope distance to rivers has an accuracy similar to the other
topographical variables.

Although it is important to be aware of abovementioned possible
mapping errors, a critical analysis of the weights and contrasts, ROC
curves and success and prediction rate curves allows us to conclude
that for the 500 km2 study area, WofE enabled the production of a
landslide susceptibility map showing the propensity to be affected by
deep-seated landsliding. The quality of the map (Fig. 6) was
successfully tested by calibrating five models for a stratified random
sample of 4990 grid cells, and validating these models in 4991 other
randomly chosen grid cells and in the complete study area.

The results of WofE contribute to the understanding of spatial
patterns of deep-seated landslides in the study area, as they provide
information on the importance of both environmental causal factors
and categories within these factors. As elevation, slope gradient and
lithology have most categories significant at a level of 0.05 (i.e.
StudCN1.64) they are regarded as the main variables explaining the
spatial occurrence of the landslides. Weights obtained for these three
variables learn that deep-seated landslides are mainly found on the
50% highest elevations of the studyarea (Fig. 4A), i.e. above 2300ma.s.l.,
on slope sections with a moderate slope gradient between 5° and 13°
and with Amba Aradam sandstone or Upper Antalo limestone forma-
tions. Also the variable distance to faults has significant categories.More
specifically, a positive agreement between landslides and faults at
distances between 710 and 1130mwere obtained. Hence, landslides are
generally not located in zones with weaker lithology along faults. The
variable distance to faults was also included in the analysis as deep-
seated landslides in the study area might be triggered by earthquakes,
but the results obtained do not allow drawing conclusions here. Finally,
it is important that the results obtained for distance to downslope rivers
indicate that the displaced material generally does not reach the river
valley. Hence, undercutting of the slope by a river was probably not the
main triggering factor of the deep-seated landslides.
The obtained findings partly confirm the initiation conditions we
suggested after field observations (Moeyersons et al., 2008). Our
hypothesis is that landslides were initiated on the highest plateau,
above the Amba Aradam sandstone cliff, where weathering of trap
basalts and intercalated lacustrine deposits resulted in the develop-
ment of Vertisols and vertic Cambisols rich in smectite clays (Nyssen
et al., 2008), and hillslope gradients are generally below 15°. Although
little is known about the triggering factors of the old landslides
(Nyssen et al., 2003), mobilisation of the weathered basalt material
rich in swelling clays is believed to be driven by increased pore water
pressures on the impermeable baked upper boundary of the Amba
Aradam cliff. Although, similar to all lithological layers, this cliff is
indicated as a nearly horizontal layer on the geological map,
observations at landslide sites showed that the Amba Aradam upper
boundary can be undulated, forming a depression. Probably infiltrat-
ing rain water was concentrated in these depressions, decreasing the
local slope stability more compared to locations further away. The
debris mobilised by the landslide was then suggested to be
transported over cliffs of the Amba Aradam sandstone and Antalo
limestone formations (Fig. 3A–C) and deposited on Agula shales and
Antalo limestones. In the case of rotational flowing and sliding,
sometimes large sandstone or limestone blocks dragged by the debris,
formed reverse slopes. Hence, in this hypothesis, lithology with the
presence of swelling clays and alternations of aquifers and aquitards is
probably a more important causal factor than slope gradient.

WofE confirms the presence of landslides in Amba Aradam
sandstones and upper Antalo limestone formations, but no association
was found between landslides and trap basalts. Two reasons can be put
forward. First, there is the fact that complete landslides were
incorporated in this analysis. The landslide depletion areas (Fig. 1),
however, comprise only 28.1% of the total landslide areas. Thus,
lithologies that are more abundant in the total landslide areas have
higher weights than the basalts. Secondly, and more important, is that
we focus on old deep-seated landslides, and that currently all basalt
might have been removed by slope processes, such as landsliding and
soil erosion bywater from someplateaus (e.g. Guyena ridge andMedayk
ridge; Fig. 1). The presence of basaltic material downslope of the Amba
Aradam sandstone cliff, on locations where nowadays no basalt is
present upslope of the cliff, confirms that this explanation is valid for at
least certain sites. Moreover, most landslide accumulation areas have
dark soils typical for weathered basalt, which proofs that the in-situ
sandstone and limestone are coveredwith debris. In this way the region
benefits from the presence of deep-seated landslides, as the soil fertility
in the accumulation area is higher than the fertility of soils developed in
limestone (Moeyersons et al., 2008). Farmers in thearea are awareof this
higher soil fertility. In case of rotational landslides, for example, houses
have been built on the Amba Aradam sandstone reverse slopes, while
the surrounding fertile landslide debris is intensively cropped.

In other landslide susceptibility studies, elevation a.s.l. is not
always included as independent variable, because often this variable is
associated with landslides by virtue of other factors such as slope
gradient, geology, precipitation or landuse. In this study, elevation a.s.l.
is included as no significant dependence with geology or slope
gradient was found. Elevation a.s.l. is also no substitute for rainfall
depth as Nyssen et al. (2003) reported that rainfall depth was
controlled by slope aspect and slope gradient, but not by altitude.

The landslide susceptibility map and the results obtained not only
help in understanding the location of deep-seated landslides and their
impact on the geomorphological evolution of the study area. Although
we acknowledge that, due to differences in environmental conditions,
the susceptibility map derived for old deep-seated landslides does not
directly show locations of future landslide reactivations or shallow
landslide initiations, we believe that the map indirectly shows zones
susceptible to landslide reactivation or initiation because studies in
other parts of the world, and observations in the study area (see
Section 3.1) have proven that new landslides preferentially occur on
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locations already affected by landslides in the past. The maps should
therefore be used as a tool for delineating inherent unstable areas
where human interventions decreasing slope stability should be
limited as they might induce slope failure. The examples of recent
landslide activity in the Hagere Selam region, described by Nyssen
et al. (2003; e.g. removal of lateral support for road construction), and
the damage reported to a newly installed electricity network proof the
need for such a mitigation tool. So far, it is not clear to what extent the
increase in infiltration capacity of soils in areas with water conserva-
tion measures and in areas recently converted to exclosures with a
rapid regeneration of natural vegetation, can contribute to landslide
reactivation. If they have a strong effect on slope instability, it will be a
challenge to find an equilibrium between slope stabilising measures
and soil conservation measures decreasing the factor of safety in an
area susceptible to both landslides and soil degradation, and most
important in an area where ca. 80% of the people are still living from
rain-fed agriculture (CIA World Fact Book, 2008).

6. Conclusions

For long time, the presence of old landslide bodies in a 500 km2

study area around Hagere Selam (northern Ethiopia) was unknown.
Although susceptible to soil erosion by water and tillage practices, the
hillslopes were believed to be relatively stable with regard to
landsliding. However, recent land use changes and human interven-
tions have locally decreased slope stability, and old landslides were
reactivated or new landslides occurred. We created a landslide
inventory of the study area showing the location of 57 old landslides
and sixmultiple landslide zones, together covering almost 14.8% of the
study area. We then applied a statistical technique, WofE modelling to
produce a landslide susceptibility map for the region. For the
classification of the susceptibility maps, a five-category classification
system chosen after analysis of sensitivity, specificity and Kappa
values was adopted, and a high quality tool for explaining the spatial
occurrence of the deep-seated landslides was obtained. This classifi-
cation procedure is recommended to all probabilistic studies in
regions with important spatial occurrence of landslides. As complete
evaluation of the landslide susceptibility map requires model
validation with data that was not used for the model calibration, a
stratified random sample of 4990 grid cells was used for calibration of
weights and contrasts. Application of the weights to a validation
dataset of 4991 grid cells and to all 549,000 grid cells in the study area
allowed spatial validation of theWofE results. Our results confirm that
confusion matrices and ROC curves are appropriate tools for
evaluation of landslide susceptibility models obtained with WofE.
Although susceptible to prevalence, success and prediction rate curves
also helped evaluating the results.

In the study area, deep-seated landslides are expected to be found
at the border of the highest plateaus at altitudes above 2300 m on
slope sections with slope gradients between 5° and 13°. The landslide
debris is found on Amba Aradam sandstones and upper Antalo
limestones. Initiation is hypothesized to be enhanced by the presence
of white clays and marls from the lacustrine layers deposited between
the trap basalts. When the volume of mobilised soil is considerable,
the landslide debris will be transported over cliffs of the Amba Aradam
sandstone and the Antalo limestone formations, eventually dragging
large blocks of sand- and limestone, and the fertile debris (weathered
basalt) will be deposited on Agula shales and Antalo limestones. Field
observations indicate that Vertisols and vertic Cambisols, typical
weathering products of basalt, are nowadays covering the sand- and
limestone in most landslide accumulation areas. Although the created
landslide susceptibility model provides no information on the
triggering factors, the deep-seated landslides are believed to be
driven by increasing pore water pressures (induced by high rainfall or
by land use changes) in the weathered basalts resting on the
impermeable Amba Aradam sandstone cliff with the baked contact.
WofE might seem inferior to other statistical models such as logistic
regression or discriminant analysis, but previous studies have proven its
usefulness in industrialised countries such as Germany (Neuhäuser and
Terhorst, 2007), France (Thiery et al., 2004) and Italy (vanWesten et al.,
2003; Poli and Sterlacchini, 2007). This study demonstrates that also in
regions with less detailed information on environmental characteristics
the applied technique allows understanding both the distribution of old,
deep-seated landslides and the present-day geomorphological char-
acteristics of an area. We also suggest that, given that future landslides
often occur on hillslopes affected by landslides in the past, the
susceptibility map indirectly allows delineating zones susceptible to
future slope failure. Therefore, the applied methodology can be
recommended as a tool for landslide susceptibility assessment.
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