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Introduction 
Previous studies on high-resolution isotope measurements in wood have found a remarkable 
annual cyclicity in the isotope profile and this for temperate as well as tropical tree species 
(Schleser et al. 1999, Helle and Schleser 2004, Helle et al. 2004, Verheyden et al. 2004). 
The presence of this annual cyclicity offers great potential for tropical dendrochronology in 
general. Indeed, if these results can be confirmed in other tropical tree species, the annual 
isotope signal can be used to identify annual tree ring boundaries in trees that do not 
produce anatomical tree ring boundaries (a problem commonly encountered in tropical trees) 
(Verheyden et al. 2004). However, the high-resolution isotope profiles could not entirely be 
explained by changes in environmental conditions. Previous investigations suggested that 
the isotope signal is probably the result of a post-photosynthetic signal on which the 
environmental signal is superimposed (Helle and Schleser 2004, Verheyden et al. 2004). In 
this context, the post-photosynthetic signal is defined as the signal resulting from additional 
fractionations occurring after leaf sugar synthesis, such as fractionations involved in the 
storage and remobilization of starches. If high-resolution isotope profiles are to be used for 
dendrochronological purposes, two fundamental questions need to be answered: 1) is the 
annual cyclicity in the isotope profile a universal pattern and 2) can the environmental signal 
be separated from the post-photosynthetic signal(s)? 
 
In this study, the high-resolution stable carbon and oxygen isotope profiles of three liana 
species were investigated to contribute to the growing knowledge on changes in the intra-
annual isotopic composition of tree rings. More specifically, the aim of this study was to 1) 
investigate whether there is a periodicity in the high-resolution stable isotope profiles in 
tropical and temperate liana species, 2) compare the isotope profiles of a tropical evergreen, 
a temperate evergreen and a temperate deciduous species, 3) compare the oxygen and 
carbon isotope profiles. 
 
Materials and Methods 
Three liana species were investigated: the temperate evergreen Hedera helix (Fam. 
Araliacea), the temperate deciduous Clematis vitalba (Fam. Ranunculaceae) and the tropical 
evergreen Tetracera alnifolia (Fam. Dilleniaceae). H. helix and C. vitalba were collected on 
14 November 2004 in Zavelenberg, Sint-Agatha-Berchem, Belgium. T. alnifolia was collected 
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in 1989 from the Kouilou region, Republic of Congo. All samples are now part of the Royal 
Museum for Central Africa, Tervuren, Belgium. From each sample, a series of tangential 
wood slices of 20 to 40 µm thickness were obtained for isotope measurements using a fixed-
blade sledge microtome (Polycut E, LEICA Microsystems, Bensheim, Germany). No 
cellulose extraction of the samples was performed, since many studies have reported a 
constant offset between the isotopic composition of bulk wood and cellulose (e.g. Livingston 
and Spittlehouse, 1996, Saurer et al., 2000, Helle and Schleser, 2004).  
 
Results and Discussion 
Hedera helix 
Both, the stable carbon and oxygen isotope profiles of H. helix show an annual cyclicity (Fig. 
1). The lowest δ13C value occurs at the tree ring boundary, after which a gradual increase 
takes place. The decrease in δ13C begins in the late stage of the growth ring formation (at 
approximately 2/3 of the ring width). The δ18O also shows a lowest value at the tree ring 
boundary, however, the highest value precedes the maximum of the δ13C value. In the year 
2003, δ13C and δ18O show higher values than in the two other years (Fig. 1). These higher 
values are most likely caused by the severe drought that occurred in that year (Trigo et al., 
2005). Furthermore, it is interesting to note that the δ13C and δ18O pattern look very similar in 
2002 and 2003, which indicates that both signals detain similar information during this time 
period, however the signals differ in 2004.   

 
Figure 1: High-resolution stable oxygen (solid symbols) and carbon (open symbols) isotope profiles of 
Hedera helix. 
 
Clematis vitalba 
Similar to the profiles of H. helix, the δ13C and δ18O profiles of C. vitalba also show an annual 
cyclicity (Fig. 2). However, the annual δ13C signal is strongly influenced by the 2003 drought, 
which probably also affected the year 2004. The δ13C pattern under more ‘normal’ 
environmental conditions is therefore, implied from the year 2002. The δ13C pattern of C. 
vitalba differs from H. helix in that the highest value and the consequent decrease in δ13C 
occurs in the earlywood and therefore, in an early stage of the growth ring formation, while a 
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more or less stable value is obtained in the latewood. Interestingly, this pattern has also been 
observed in Quercus spp. (Helle and Schleser, 2004). Both C. vitalba and Quercus spp. are 
ring porous and characterized by an abrupt difference between small vessels in the latewood 
and large vessels in the earlywood. Ring porous species are known to use stored 
carbohydrates to develop their earlywood vessels, prior to leaf emergence and therefore, 
prior to the production of new photosynthetic material (Aloni, 2004). This affetcs the δ13C 
profile in particular, as indicated by the high δ13C value in the earlywood of 2004, but not the 
δ18O profile, which is consitent with the results from Hill et al. (1995). Indeed, these authors 
found that the δ13C value of the earlywood was influenced by the previous year 
carbohydrates, while the δ18O value was not, due to exchange with current-year xylem water. 
The similarity in the isotope profiles of C. vitalba and Quercus spp. offers additional evidence 
that the shape of the δ13C profile is probably mainly controlled by post-photosynthetic 
processes. The δ18O signal has a lowest value in the vicinity of the tree ring boundary, while 
the highest value occurs in the latewood and therefore, is considerably different from the δ13C 
profile (Fig. 2).  
 

 
Figure 2: High-resolution stable oxygen (solid symbols) and carbon (open symbols) isotope profiles of 
Clematis vitalba. 
 
Tetracera alnifolia 
Similar to the temperate liana species, the isotope signal in this tropical species also shows 
considerable variation in the high-resolution profile (Fig. 3), with peak amplitudes (2 ‰) 
exceeding those observed in the temperate liana species (1.5 ‰). However, the isotopic 
composition of T. alnifolia was measured over a larger wood section (by a factor of about 3) 
as compared to the temperate liana species.  
Although the T. alnifolia sample originated from a region with a distinct dry season of four 
months, no distinct growth ring boundaries could be identified, nor does the δ13C profile 
present the typical periodicity observed in other temperate and tropical trees (e.g. Helle and 
Schleser 2004, Helle et al. 2004, Verheyden et al. 2004). Due to the absence of distinct 
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growth ring boundaries, we can at this moment, not confirm whether the observed peaks are 
annual, nor can we exclude the possibility that the peaks reflect severe droughts which are 
known to occur in the region sporadically. Comparison of the peaks with particular 
anatomical features (Fig. 3) reveals only partial association of peaks with indistinct 
anatomical structures in the wood. These results illustrate that the use of high-resolution 
profiles for identification of growth ring boundaries in tropical woody plants is not 
straightforward and needs to be further confirmed in different species.  

 
Figure 3: High-resolution stable carbon isotope profiles of Tetracera alnifolia. Vertical lines indicate 
position of observed indistinct anatomical features. 
 
Conclusions 
The results from this study add evidence for the presence of an annual cyclicity in the isotope 
profiles of temperate woody plants. Although the annual cyclicity could not be proven in the 
evergreen tropical liana species, the considerable variation in the high-resolution isotope 
profile is remarkable for this species which shows relatively little variation in wood anatomical 
features. Furthermore, the results obtained here suggest that the shape of the profiles are 
species specific, but that they can be classified according to similarities in the pattern. 
Comparison of the profiles of different species, can then further give insight in the processes 
involved in the shaping of the profile as was observed here for C. vitalba and Quercus spp. 
Finally, the study clearly showed that, unlike the results obtained in other studies (Barbour et 
al. 2002, Verheyden et al. 2004), the δ18O and δ13C values do not give similar signals in the 
two temperate liana species, pointing to different causes of their formation. 
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